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Abstract: Visual Simultaneous Localization and Mapping (SLAM) is a method that re- 1

lies on visual feature tracking to estimate the camera motion while creating a map of the 2

environment. It is crucial for autonomous navigation of robots, vehicles and drones in 3

GNSS-denied environments (urban canyons, tunnels, indoors) and any environment with 4

jamming / spoofing. SLAM algorithms generally assume that features in the observed en- 5

vironment belong to static and rigid objects. Thus, in crowded and dynamic environments 6

such as urban traffic, the algorithm’s performance in terms of camera motion estimation is 7

heavily affected by the large amount of dynamic objects observed. To address this chal- 8

lenge, an innovative real-time method for the detection and exclusion of moving objects 9

in the motion estimation stage of a Visual SLAM frontend is presented. We implement 10

our method on a real-vehicle, evaluate it on multiple public datasets and prove that the 11

removal of dynamic objects leads to increased accuracy and robustness of the position 12

solution. This work was conducted under the EU-funded DREAM project. 13

Keywords: Visual SLAM; Semantic SLAM; dynamic environments; autonomous naviga- 14

tion; instance segmentation; dynamic object removal; real-time localization 15

1. Introduction 16

Visual SLAM is an extensively studied research topic and a core technique for visual 17

navigation. While fundamental work and significant progress have been achieved in the 18

field of Visual SLAM in recent years, numerous challenges remain, such as its application 19

in difficult environments, e.g., texture-poor or highly dynamic environments. 20

Visual SLAM systems rely purely on visual feature tracking from cameras for motion 21

estimation, usually employing classical, long-standing computer vision algorithms for 22

feature detection, tracking, and motion estimation. In the last decades, Deep Learning 23

techniques have transformed the field of computer vision and led to great advances in 24

many areas such as image classification and segmentation. While Visual SLAM could 25

benefit from incorporating feature representations or semantic information computed by 26

Deep Learning models, this is seldom done, because of computational efficiency constraints. 27

28

A foundational premise for many Visual SLAM methods is the static world assumption. 29

By assuming a static world any motion observed in the image features can be attributed 30

solely to the camera’s ego motion. In real-world scenarios, this assumption rarely holds 31

true. Urban environments are frequented by pedestrians and various types of vehicles and 32

pose a significant challenge to Visual SLAM systems designed under that premise, often 33
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leading to degraded performance of the VSLAM system and causing trajectory drift. 34

35

Many approaches for the handling of dynamic objects in Visual SLAM systems have 36

been proposed. Most of these incorporate object detection, semantic segmentation or instance 37

segmentation networks to determine and segment out the dynamic objects in a scene. 38

DynaSLAM [1] uses Mask R-CNN [2] to obtain pixel-wise semantic segmentations of the 39

input images. Features that belong to a pre-defined subset of potentially moving object 40

classes are eliminated to estimate a map of the static parts of the scene. DOT [3] first 41

segments instances of potentially dynamic objects (except humans) and then tracks these 42

objects by minimizing the photometric reprojection error to propagate the instance masks, 43

thus eliminating the requirement to segment all the frames and enabling implementation 44

in real-time. It further proposes a metric that can be used to determine whether an object 45

is actually moving or not. DS-SLAM [4] integrates SegNet [5] for semantic segmentation 46

with motion consistency to improve robustness in dynamic scenes. It detects moving 47

points by computing the fundamental matrix with RANSAC and discarding matched 48

points with a high distance to their corresponding epipolar lines. In [6], the authors 49

propose a bidirectional refinement framework that integrates semantic segmentation with 50

visual SLAM in a mutually reinforcing manner. Coarse pose estimations refine semantic 51

outputs, which in turn enhance SLAM tracking and mapping. SaD-SLAM [7] extends 52

ORB-SLAM2 [8] by leveraging semantic masks from MASK-RCNN and depth information 53

to identify and distinguish between static and dynamic points. It further uses epipolar 54

constraints across multiple frames to classify points as dynamic. CFP-SLAM [9] introduces 55

a coarse-to-fine static probability mechanism based on object detection. By combining 56

semantic, geometric, and motion constraints, the system assigns static probabilities to 57

keypoints and map points, using them as weights in pose optimization. OVD-SLAM [10] 58

introduces a more efficient method for identifying dynamic points by checking their motion 59

consistency, avoiding the heavy computation of solving the fundamental matrix. It removes 60

points with abnormal optical flow values using a chi-square test, and assigns optimization 61

weights to map points based on their dynamic likelihood to improve pose estimation. 62

NGD-SLAM [11] achieves real-time accuracy while running on a CPU by introducing 63

a mask prediction mechanism that utilizes previous segmentation results to predict the 64

mask of dynamic objects in the current frame. It processes RGB-D input and makes use 65

of the depth information to generate masks for objects detected using a YOLO network. 66

In [12], the authors propose a real-time semantic RGB-D SLAM framework that applies 67

semantic segmentation exclusively to keyframes in order to reduce computational overhead. 68

Unknown dynamic objects are identified through depth clustering and reprojection error 69

analysis, allowing for the removal of both known and unknown dynamic entities. 70

This work follows a similar strategy by incorporating an accurate instance segmenta- 71

tion model, a mask propagation technique and a dynamic feature recognition algorithm. In 72

contrast to DOT and other dynamic SLAM systems that are mostly based on ORB-SLAM2, 73

it is integrated into an efficient, sparse, keypoint-based Visual Odometry (VO) frontend 74

named Basalt [13]. Further, it is optimized for real-time usage and evaluated on the KITTI 75

Odometry dataset [14] featuring automotive urban outdoor scenarios. 76

2. Materials and Methods 77

This chapter describes the dynamic instance removal (DIR) algorithm and its sub- 78

modules in detail. In Figure 1 a diagram of the architecture of the proposed method is 79

depicted. Initially, instance segmentation masks are generated using a Deep Learning 80

model (Section 2.1). The mask prediction algorithm that is introduced to compensate for the 81

high processing time of the instance segmentation network is detailed in section 2.2. These 82
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Figure 1. Architecture overview of the dyanmic instance removal method.

masks provide pixel-wise class labels for objects recognized in an image, but do not contain 83

any information about whether an object is in motion or not. The algorithm distinguishing 84

between keypoints corresponding to dynamic objects and keypoints belonging to static 85

objects (e.g., parked cars) is defined in section 2.3. Figure 2 illustrates the features that 86

are used for motion estimation by the Visual Odometry frontend without a moving object 87

removal mechanism ((a)) and after application of the suggested approach ((b)). 88

(a)

(b)

Figure 2. Comparison between the original Visual Odometry frontend (Basalt) without dynamic
object removal and the extended Basalt frontend with integrated dynamic object removal algorithm
demonstrated using an image from the KITTI Odometry dataset.

2.1. Instance Mask segmentation 89

Instance segmentation is performed on the left image of the stereo pair using a pre- 90

trained Mask R-CNN model with a ResNet backbone architecture implemented in the 91

MMDetection framework [15]. This model operates in two stages: first generating a region 92

proposal and then performing classification and mask prediction within the proposed 93

region. Compared to one-shot instance segmentation models like YoloAct [16], two-stage 94

models like Mask R-CNN offer superior segmentation accuracy, but come with an increased 95

computational load that can degrade the real-time performance of the VSLAM system. We 96

optimize the execution of the model using TensorRT for GPU acceleration. We limit the 97

Mask R-CNN output exclusively to potentially dynamic classes, i.e., vehicles and humans. 98

2.2. Mask propagation 99

As previously mentioned, due to the high computational cost associated with instance 100

segmentation, it is not feasible to run this process at the full frame rate required by the 101

SLAM system. To overcome this limitation, we introduce a mask propagation strategy that 102

estimates the segmentation masks for intermediate frames based on previously generated 103
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outputs. This approach allows the system to maintain high frame-rate processing while 104

reducing computational overhead. Given the current image frame Icur (whose instance seg- 105

mentation masks are unknown) and the previous image frame Ipre with its corresponding 106

masks, the algorithm first computes a sparse set of features using the Shi-Tomasi corner 107

detector. Corner points that fall into a mask region are tracked to the current image frame 108

with the incremental Lucas-Kanade Optical Flow method [17]. Given the set of matched fea- 109

ture correspondences {(xi, x′i)} the parameters p of an affine 2D transformation x′ = f(x; p) 110

can be estimated, if there are at least three corresponding feature points available. Finally, 111

the affine warp f is applied to transform an instance mask to its approximate location in 112

Icur. An exemplary usage for the mask propagation algorithm is illustrated in Figure 3. 113

(a) (b)

(c)

Figure 3. Upper row: Two consecutive images from sequence 01 of the KITTI Odometry dataset with
instance mask overlays that were obtained by the Mask R-CNN instance segmentation network. The
instance masks from ((a)) are fed to the mask propagation algorithm which predicts their location
in the next image ((c)). Compared to the masks produced by the Deep Learning model ((b)) the
propagated masks are slightly less accurate, as seen in the mask for the approaching car on the left.

2.3. Dynamic Instance Removal 114

To improve trajectory accuracy, keypoints from dynamic objects should be excluded 115

from the SLAM processing pipeline. The dynamic status of the object instance is derived 116

using a method that integrates epipolar geometry with instance segmentation masks. 117

When calculating the static probability Pstatic of each potential dynamic object, we adopt 118

the approach proposed in [4]. 119

Given the current frame Icur and the previous frame Ipre, we first extract FAST [18] 120

corners xcur from Icur, and track their correspondences xpre in Ipre using Lucas-Kanade 121

Optical Flow, forming keypoint pairs (xi
cur, xi

pre). 122

Subsequently, the fundamental matrix F is estimated from the matched keypoints 123

using the RANSAC algorithm. For each matched keypoint pair the epipolar error Di 124

is computed, defined as the geometric distance between a point and its corresponding 125

epipolar line. 126

Since the pixel coordinates of keypoint pairs from optical flow tracking have two 127

degrees of freedom, the chi-square distribution with k = 2 is used to statistically evaluate 128

the epipolar error Di of these matches. 129

Given the set of instance masks S obtained from the instance segmentation of Icur, 130

we evaluate the geometric consistency of keypoints within each mask. For each instance 131

mask Sj ∈ S , the epipolar errors Di of all keypoint pairs located within the mask are sorted 132

in ascending order. The average of the values at the 0.1M, 0.2M, and 0.3M positions in 133

the sorted list (where M is the total number of keypoint pairs within Sj) is then computed 134
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and assigned as the static probability Pstatic of the instance mask Sj. Instance masks with 135

Pstatic < 0.8 are classified as dynamic, and all keypoints contained within these masks are 136

subsequently discarded. 137

This strategy leverages both geometric motion constraints and instance segmentation 138

to remove dynamic features efficiently, preserving only those likely to be static for accurate 139

pose estimation. 140

3. Results 141

3.1. Metrics 142

The following metrics are used for the Visual Odometry trajectory accuracy evaluation: 143

Root Mean Square (RMS) for Absolute Trajectory Error (ATE) computed on corresponding 144

pose pairs of estimated and ground truth trajectory for global accuracy, and Relative Pose 145

Error (RPE) computed from relative poses between two consecutive frames of estimated 146

and ground truth trajectory to represent the local accuracy. 147

3.2. Dynamic Objects Ground Truth (GT) for KITTI Odometry 148

Figure 4. An example of dynamic masks generated using Mask R-CNN and Moving Object Segmen-
tation challenge ground truth data for KITTI Odometry Seq 08, frame 2.

To analyze the KITTI Odometry dataset in terms of the presence of dynamic objects, 149

as well as to evaluate the dynamic object detection approach, we generated pseudo-GT for 150

dynamic objects based on Mask R-CNN instance segmentation output and Lidar ground 151

truth data from the SemanticKITTI Moving Object Segmentation challenge [19] in the 152

following way: To determine which of the detected object instances are truly dynamic, the 153

labeled dynamic pointcloud is projected onto the camera frame with a predefined constant 154

radius to form a sparse dynamic mask. The Mask R-CNN instance of a potentially dynamic 155

semantic class is aligned with this sparse dynamic mask, and the intersection with the 156

dynamic area of a compatible semantic class is measured and compared to an empirically 157

adjusted threshold for each instance separately. The generated example is shown in Figure 158

4. 159
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3.3. Visual SLAM accuracy 160

Table 1. RMSE ATE (in meters) on KITTI Odometry sequences: Basalt baseline (no masks), all masks
from Mask R-CNN (Det), masks detected as dynamic (DIR), masks propagated from previous frame
(Prop.), DIR on propagated masks (pDIR), pseudo-GT dynamic masks (dGT).

Basalt Det DIR Prop. pDIR dGTSeq ATE ATE ∆,% ATE ∆,% ATE ∆,% ATE ∆,% ATE ∆,%
0 3,91 3,64 -6,81 3,72 -4,78 3,87 -1,04 3,87 -1,04 3,92 0,32
1 107,70 81,33 -24,48 76,01 -29,42 77,24 -28,28 80,27 -25,47 85,56 -20,55
2 10,59 9,34 -11,82 9,41 -11,19 9,61 -9,32 9,61 -9,31 9,72 -8,27
3 1,32 1,34 1,74 1,30 -1,58 1,33 0,75 1,33 0,75 1,32 0,01
4 1,30 1,31 0,77 1,31 0,76 1,29 -0,71 1,29 -0,71 1,32 1,79
5 2,94 2,58 -12,25 2,59 -11,76 2,77 -5,84 2,77 -5,84 2,89 -1,75
6 2,53 2,59 2,18 2,55 0,79 2,53 -0,29 2,53 -0,29 2,53 -0,26
7 1,40 1,36 -2,91 1,41 0,79 1,42 1,07 1,42 1,07 1,31 -6,58
8 3,78 3,99 5,74 4,14 9,60 3,98 5,43 3,98 5,42 3,87 2,40
9 3,85 3,95 2,62 3,97 3,25 3,93 2,09 3,93 2,09 3,88 0,93
10 1,12 0,98 -13,02 0,97 -13,35 0,96 -14,03 0,96 -14,03 0,97 -13,18

For the Visual Odometry solution with dynamic object removal, we first investigate 161

the potential improvement from removing moving objects by evaluating all semantic masks 162

from Mask R-CNN, only masks detected as dynamic applying the dynamic object method 163

presented in Section 2.3, and as a best-case scenario, pseudo-GT masks described in Section 164

3.2. For better repeatability and fair comparison between different setups, we use the same 165

pre-exported Mask R-CNN detections. 166

The evaluation results for the KITTI Odometry sequences are shown in Table 1. Re- 167

moving keypoints from all masks produced by the instance segmentation network turns 168

out to have a positive impact on the accuracy of the estimated trajectory, especially for 169

the highly dynamic sequences like 01. However, a notable decrease in quality is observed 170

for sequences with a high amount of static objects(e.g., parked cars, particularly present 171

in sequence 08). The results on dynamic pseudo-GT masks show that keeping keypoints 172

from those static objects, as well as filtering false detections, are critical for preventing 173

the SLAM accuracy from decreasing. Figure 5(a) compares the amount of detected frame 174

keypoints that were defined as semantic outliers (belonging to instances with semantic 175

class of "human" or "vehicle") and the ones defined as dynamic outliers(whose instances 176

were detected to be dynamic in pseudo-GT). The significant increase of the RPE visible in 177

the plot is well aligned with the increase of dynamic outliers. This proves that in some 178

cases, dynamic objects are the source of drift accumulation in a Visual Odometry trajectory. 179

3.4. Real-time setup 180

For online usage, all components of the proposed system were implemented in the 181

ROS2 framework [20] with the aim of deployment in a real vehicle for real-time applications. 182

The used Car PC is equipped with an Intel Core i9-13900E CPU and an NVIDIA RTX 4080 183

Super 16 GB GPU. For test purposes, the KITTI Odometry sequences were converted to 184

ROS2 bag files. 185

The GPU-accelerated Mask R-CNN model was able to reach up to 48 fps performance 186

on the given setup, exceeding the 10 fps data rate of the KITTI Odometry dataset and 187

fulfilling the common real-time processing requirement of 30 fps. 188

The generation and processing of segmentation masks leads to a latency of 21 mil- 189

liseconds in the processing pipeline, which the Visual Odometry solution has to wait. To 190

reduce this latency we applied the mask propagation approach from Section 2.2 which 191

reduced the latency to 14 milliseconds on average. For usage on less powerful computers 192
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(a) (b)

Figure 5. ((a)) Upper row: RPE (y-axis) over frame id (x-axis) for pairs of successive frames. Bottom
row: ratio of keypoints determined as dynamic to total number of frame keypoints (y-axis) over frame
id (x-axis). ((b)) Estimated DIR trajectory aligned with the ground truth trajectory for KITTI sequence
07.

and embedded systems, application of the mask propagation algorithm becomes crucial, 193

because instance segmentation networks run at less than 5 frames per second. 194

4. Discussion 195

Our analyses and experiments show that dynamic environments pose a problem to 196

feature-based visual localization algorithms and degrade their overall accuracy. The system 197

proposed as a solution to this problem demonstrates promising results by reducing the 198

trajectory error (both ATE and RPE) of the position solution. Furthermore, we showed 199

that the realization of a dynamic object removal algorithm that employs a powerful Deep 200

Learning model in a real-time setup is feasible on a car embedded system. Nonetheless, the 201

following limitations remain and will be addressed in future research efforts: 202

• A SLAM dataset incorporating dynamic object GT is essential for advancing research 203

in moving object removal approaches for VSLAM. The proposed solution making 204

use of Lidar data is limited to the Lidar sensor range, resulting in distant objects not 205

being included in the pointcloud data and, although being used by SLAM, remain- 206

ing unlabeled. The potential solution is to propagate the dynamic status for object 207

observations over frames, from close ones to distant ones. 208

• The mask prediction algorithm struggles in certain scenarios, e.g., when applied on 209

dynamic objects whose appearance is not cohesive over time, such as persons or 210

bicyclists - here the stereo depth information could be employed to cluster these 211

objects for mask refinement. 212

• The adopted instance segmentation network is pretrained on the large-scale image 213

recognition dataset COCO and although generalizing well on automotive scenes, 214

can be finetuned specifically for the desired operational environments for enhanced 215

accuracy. 216

• Traditional methods based on epipolar constraints for filtering dynamic instances are 217

outperformed by utilizing ground truth masks annotated solely for dynamic objects. 218

This motivates training a moving object segmentation network, improving visual 219

odometry through frontend integration. 220

The developed real-time capable algorithms for Visual SLAM with dynamic object 221

removal will be integrated into the V-ROX system, which is the enhancement of the A-ROX 222

https://anavs.com/products/vrox/
https://anavs.com/products/arox/
https://anavs.com/products/arox/
https://anavs.com/products/arox/
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GNSS-INS positioning system, providing precise and robust localization in challenging 223

environments and featuring environment detection using camera and LiDAR sensors. 224
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ATE Absolute Trajectory Error
CNN Convolutional Neural Network
CPU Central Processing Unit
DIR Dynamic Instance Removal
DOT Dynamic Object Tracking
EU European Union
FAST Features from Accelerated Segment Test
GNSS Global Navigation Satellite System
GPU Graphics Processing Unit
GT Ground Truth
RANSAC RANdom SAmple Consensus
RMS Root Mean Square
RMSE Root Mean Square Error
ROS2 Robot Operating System 2
RPE Relative Pose Error
SLAM Simultaneous Localization and Mapping
VO Visual Odometry
VSLAM Visual Simultaneous Localization and Mapping
YOLO You Only Look Once
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