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Abstract: Visual Simultaneous Localization and Mapping (SLAM) is a method that re-
lies on visual feature tracking to estimate the camera motion while creating a map of the
environment. It is crucial for autonomous navigation of robots, vehicles and drones in
GNSS-denied environments (urban canyons, tunnels, indoors) and any environment with
jamming / spoofing. SLAM algorithms generally assume that features in the observed en-
vironment belong to static and rigid objects. Thus, in crowded and dynamic environments
such as urban traffic, the algorithm’s performance in terms of camera motion estimation is
heavily affected by the large amount of dynamic objects observed. To address this chal-
lenge, an innovative real-time method for the detection and exclusion of moving objects
in the motion estimation stage of a Visual SLAM frontend is presented. We implement
our method on a real-vehicle, evaluate it on multiple public datasets and prove that the
removal of dynamic objects leads to increased accuracy and robustness of the position
solution. This work was conducted under the EU-funded DREAM project.

Keywords: Visual SLAM; Semantic SLAM; dynamic environments; autonomous naviga-
tion; instance segmentation; dynamic object removal; real-time localization

1. Introduction

Visual SLAM is an extensively studied research topic and a core technique for visual
navigation. While fundamental work and significant progress have been achieved in the
field of Visual SLAM in recent years, numerous challenges remain, such as its application
in difficult environments, e.g., texture-poor or highly dynamic environments.

Visual SLAM systems rely purely on visual feature tracking from cameras for motion
estimation, usually employing classical, long-standing computer vision algorithms for
feature detection, tracking, and motion estimation. In the last decades, Deep Learning
techniques have transformed the field of computer vision and led to great advances in
many areas such as image classification and segmentation. While Visual SLAM could
benefit from incorporating feature representations or semantic information computed by
Deep Learning models, this is seldom done, because of computational efficiency constraints.

A foundational premise for many Visual SLAM methods is the static world assumption.
By assuming a static world any motion observed in the image features can be attributed
solely to the camera’s ego motion. In real-world scenarios, this assumption rarely holds
true. Urban environments are frequented by pedestrians and various types of vehicles and
pose a significant challenge to Visual SLAM systems designed under that premise, often
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leading to degraded performance of the VSLAM system and causing trajectory drift.

Many approaches for the handling of dynamic objects in Visual SLAM systems have
been proposed. Most of these incorporate object detection, semantic segmentation or instance
segmentation networks to determine and segment out the dynamic objects in a scene.
DynaSLAM [1] uses Mask R-CNN [2] to obtain pixel-wise semantic segmentations of the
input images. Features that belong to a pre-defined subset of potentially moving object
classes are eliminated to estimate a map of the static parts of the scene. DOT [3] first
segments instances of potentially dynamic objects (except humans) and then tracks these
objects by minimizing the photometric reprojection error to propagate the instance masks,
thus eliminating the requirement to segment all the frames and enabling implementation
in real-time. It further proposes a metric that can be used to determine whether an object
is actually moving or not. DS-SLAM [4] integrates SegNet [5] for semantic segmentation
with motion consistency to improve robustness in dynamic scenes. It detects moving
points by computing the fundamental matrix with RANSAC and discarding matched
points with a high distance to their corresponding epipolar lines. In [6], the authors
propose a bidirectional refinement framework that integrates semantic segmentation with
visual SLAM in a mutually reinforcing manner. Coarse pose estimations refine semantic
outputs, which in turn enhance SLAM tracking and mapping. SaD-SLAM [7] extends
ORB-SLAM2 [8] by leveraging semantic masks from MASK-RCNN and depth information
to identify and distinguish between static and dynamic points. It further uses epipolar
constraints across multiple frames to classify points as dynamic. CFP-SLAM [9] introduces
a coarse-to-fine static probability mechanism based on object detection. By combining
semantic, geometric, and motion constraints, the system assigns static probabilities to
keypoints and map points, using them as weights in pose optimization. OVD-SLAM [10]
introduces a more efficient method for identifying dynamic points by checking their motion
consistency, avoiding the heavy computation of solving the fundamental matrix. It removes
points with abnormal optical flow values using a chi-square test, and assigns optimization
weights to map points based on their dynamic likelihood to improve pose estimation.
NGD-SLAM [11] achieves real-time accuracy while running on a CPU by introducing
a mask prediction mechanism that utilizes previous segmentation results to predict the
mask of dynamic objects in the current frame. It processes RGB-D input and makes use
of the depth information to generate masks for objects detected using a YOLO network.
In [12], the authors propose a real-time semantic RGB-D SLAM framework that applies
semantic segmentation exclusively to keyframes in order to reduce computational overhead.
Unknown dynamic objects are identified through depth clustering and reprojection error
analysis, allowing for the removal of both known and unknown dynamic entities.

This work follows a similar strategy by incorporating an accurate instance segmenta-
tion model, a mask propagation technique and a dynamic feature recognition algorithm. In
contrast to DOT and other dynamic SLAM systems that are mostly based on ORB-SLAM?2,
it is integrated into an efficient, sparse, keypoint-based Visual Odometry (VO) frontend
named Basalt [13]. Further, it is optimized for real-time usage and evaluated on the KITTI
Odometry dataset [14] featuring automotive urban outdoor scenarios.

2. Materials and Methods

This chapter describes the dynamic instance removal (DIR) algorithm and its sub-
modules in detail. In Figure 1 a diagram of the architecture of the proposed method is
depicted. Initially, instance segmentation masks are generated using a Deep Learning
model (Section 2.1). The mask prediction algorithm that is introduced to compensate for the
high processing time of the instance segmentation network is detailed in section 2.2. These
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Mask R-CNN output for Ip’re Mask PrOpagation

Dynamic Instances:
Detection & Removal

Basalt Visual Odometry

Basalt Optical Flow

Figure 1. Architecture overview of the dyanmic instance removal method.

masks provide pixel-wise class labels for objects recognized in an image, but do not contain
any information about whether an object is in motion or not. The algorithm distinguishing
between keypoints corresponding to dynamic objects and keypoints belonging to static
objects (e.g., parked cars) is defined in section 2.3. Figure 2 illustrates the features that
are used for motion estimation by the Visual Odometry frontend without a moving object
removal mechanism ((a)) and after application of the suggested approach ((b)).

(b)

Figure 2. Comparison between the original Visual Odometry frontend (Basalt) without dynamic

object removal and the extended Basalt frontend with integrated dynamic object removal algorithm
demonstrated using an image from the KITTI Odometry dataset.

2.1. Instance Mask segmentation

Instance segmentation is performed on the left image of the stereo pair using a pre-
trained Mask R-CNN model with a ResNet backbone architecture implemented in the
MMDetection framework [15]. This model operates in two stages: first generating a region
proposal and then performing classification and mask prediction within the proposed
region. Compared to one-shot instance segmentation models like YoloAct [16], two-stage
models like Mask R-CNN offer superior segmentation accuracy, but come with an increased
computational load that can degrade the real-time performance of the VSLAM system. We
optimize the execution of the model using TensorRT for GPU acceleration. We limit the
Mask R-CNN output exclusively to potentially dynamic classes, i.e., vehicles and humans.

2.2. Mask propagation

As previously mentioned, due to the high computational cost associated with instance
segmentation, it is not feasible to run this process at the full frame rate required by the
SLAM system. To overcome this limitation, we introduce a mask propagation strategy that
estimates the segmentation masks for intermediate frames based on previously generated

83

84

85

86

87

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103



Version May 26, 2025 submitted to Journal Not Specified 40f9

outputs. This approach allows the system to maintain high frame-rate processing while
reducing computational overhead. Given the current image frame I, (whose instance seg-
mentation masks are unknown) and the previous image frame Iy, with its corresponding
masks, the algorithm first computes a sparse set of features using the Shi-Tomasi corner
detector. Corner points that fall into a mask region are tracked to the current image frame
with the incremental Lucas-Kanade Optical Flow method [17]. Given the set of matched fea-
ture correspondences {(x;,x}) } the parameters p of an affine 2D transformation x’ = f(x; p)
can be estimated, if there are at least three corresponding feature points available. Finally,
the affine warp f is applied to transform an instance mask to its approximate location in
Ieur. An exemplary usage for the mask propagation algorithm is illustrated in Figure 3.

Figure 3. Upper row: Two consecutive images from sequence 01 of the KITTI Odometry dataset with

instance mask overlays that were obtained by the Mask R-CNN instance segmentation network. The
instance masks from ((a)) are fed to the mask propagation algorithm which predicts their location
in the next image ((c)). Compared to the masks produced by the Deep Learning model ((b)) the
propagated masks are slightly less accurate, as seen in the mask for the approaching car on the left.

2.3. Dynamic Instance Removal

To improve trajectory accuracy, keypoints from dynamic objects should be excluded
from the SLAM processing pipeline. The dynamic status of the object instance is derived
using a method that integrates epipolar geometry with instance segmentation masks.
When calculating the static probability Py, of each potential dynamic object, we adopt
the approach proposed in [4].

Given the current frame I, and the previous frame I, we first extract FAST [18]
corners X¢yy from Ioyy, and track their correspondences xyr, in I using Lucas-Kanade
Optical Flow, forming keypoint pairs (x.,, xi,re).

Subsequently, the fundamental matrix F is estimated from the matched keypoints
using the RANSAC algorithm. For each matched keypoint pair the epipolar error D;
is computed, defined as the geometric distance between a point and its corresponding
epipolar line.

Since the pixel coordinates of keypoint pairs from optical flow tracking have two
degrees of freedom, the chi-square distribution with k = 2 is used to statistically evaluate
the epipolar error D; of these matches.

Given the set of instance masks S obtained from the instance segmentation of oy,
we evaluate the geometric consistency of keypoints within each mask. For each instance
mask S; € S, the epipolar errors D; of all keypoint pairs located within the mask are sorted
in ascending order. The average of the values at the 0.1M, 0.2M, and 0.3M positions in
the sorted list (where M is the total number of keypoint pairs within S;) is then computed
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and assigned as the static probability Py of the instance mask §;. Instance masks with 1
Pitqtic < 0.8 are classified as dynamic, and all keypoints contained within these masks are 13
subsequently discarded. 137

This strategy leverages both geometric motion constraints and instance segmentation 1
to remove dynamic features efficiently, preserving only those likely to be static for accurate 13

pose estimation. 140
3. Results "
3.1. Metrics 142

The following metrics are used for the Visual Odometry trajectory accuracy evaluation: 1
Root Mean Square (RMS) for Absolute Trajectory Error (ATE) computed on corresponding 14
pose pairs of estimated and ground truth trajectory for global accuracy, and Relative Pose s
Error (RPE) computed from relative poses between two consecutive frames of estimated s
and ground truth trajectory to represent the local accuracy. 17

3.2. Dynamic Objects Ground Truth (GT) for KITTI Odometry 18

Mask R-CNN detections

/ \

Dynamic Masks \

v

N\

Projected Lidar Moving Ground Truth h
A # 7

—/
| —

A

Figure 4. An example of dynamic masks generated using Mask R-CNN and Moving Object Segmen-
tation challenge ground truth data for KITTI Odometry Seq 08, frame 2.

To analyze the KITTI Odometry dataset in terms of the presence of dynamic objects, s
as well as to evaluate the dynamic object detection approach, we generated pseudo-GT for s
dynamic objects based on Mask R-CNN instance segmentation output and Lidar ground s
truth data from the SemanticKITTI Moving Object Segmentation challenge [19] in the 1
following way: To determine which of the detected object instances are truly dynamic, the 1
labeled dynamic pointcloud is projected onto the camera frame with a predefined constant 15
radius to form a sparse dynamic mask. The Mask R-CNN instance of a potentially dynamic 15
semantic class is aligned with this sparse dynamic mask, and the intersection with the s
dynamic area of a compatible semantic class is measured and compared to an empirically 15
adjusted threshold for each instance separately. The generated example is shown in Figure s
4. 159
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3.3. Visual SLAM accuracy

Table 1. RMSE ATE (in meters) on KITTI Odometry sequences: Basalt baseline (no masks), all masks
from Mask R-CNN (Det), masks detected as dynamic (DIR), masks propagated from previous frame
(Prop.), DIR on propagated masks (pDIR), pseudo-GT dynamic masks (dGT).

Basalt Det DIR Prop. pDIR dGT

Sed | ATE | ATE A% | ATE A% | ATE A% | ATE A% | ATE A%
0 | 391 | 364 681 | 372 478 | 387 -1,04 | 387 -1,04 | 392 0,32
1 | 107,70 | 81,33 -24,48 | 76,01 -29,42 | 7724 28728 | 80,27 -2547 | 8556 -20,55
2 | 1059 | 934 -11,82| 941 -11,09 | 961 932 | 961 -931 | 972 -827
3 | 132 | 134 174 | 1,30 -158 | 1,33 075 | 1,33 075 | 1,32 0,01
4 | 130 | 131 o077 | 131 076 | 1,29 -071 | 1,29 -071 | 1,32 1,79
5 | 294 | 258 -1225| 259 -11,76 | 2,77 584 | 2,77 584 | 2,89 -1,75
6 | 253 | 259 218 | 255 079 | 253 -029 | 253 029 | 253 0,26
7 | 140 | 136 291 | 141 079 | 142 1,07 | 142 1,07 | 1,31 -658
8 | 378 | 399 574 | 414 960 | 398 543 | 398 542 | 387 240
9 | 385 | 395 262 | 397 325 | 393 2,09 | 393 209 | 38 0093
10 | 1,12 | 098 -13,02| 097 -1335| 096 -1403 | 0,96 -14,03 | 0,97 -13,18

For the Visual Odometry solution with dynamic object removal, we first investigate
the potential improvement from removing moving objects by evaluating all semantic masks
from Mask R-CNN, only masks detected as dynamic applying the dynamic object method
presented in Section 2.3, and as a best-case scenario, pseudo-GT masks described in Section
3.2. For better repeatability and fair comparison between different setups, we use the same
pre-exported Mask R-CNN detections.

The evaluation results for the KITTI Odometry sequences are shown in Table 1. Re-
moving keypoints from all masks produced by the instance segmentation network turns
out to have a positive impact on the accuracy of the estimated trajectory, especially for
the highly dynamic sequences like 01. However, a notable decrease in quality is observed
for sequences with a high amount of static objects(e.g., parked cars, particularly present
in sequence 08). The results on dynamic pseudo-GT masks show that keeping keypoints
from those static objects, as well as filtering false detections, are critical for preventing
the SLAM accuracy from decreasing. Figure 5(a) compares the amount of detected frame
keypoints that were defined as semantic outliers (belonging to instances with semantic
class of "human" or "vehicle") and the ones defined as dynamic outliers(whose instances
were detected to be dynamic in pseudo-GT). The significant increase of the RPE visible in
the plot is well aligned with the increase of dynamic outliers. This proves that in some
cases, dynamic objects are the source of drift accumulation in a Visual Odometry trajectory.

3.4. Real-time setup

For online usage, all components of the proposed system were implemented in the
ROS2 framework [20] with the aim of deployment in a real vehicle for real-time applications.
The used Car PC is equipped with an Intel Core i9-13900E CPU and an NVIDIA RTX 4080
Super 16 GB GPU. For test purposes, the KITTI Odometry sequences were converted to
ROS2 bag files.

The GPU-accelerated Mask R-CNN model was able to reach up to 48 fps performance
on the given setup, exceeding the 10 fps data rate of the KITTI Odometry dataset and
fulfilling the common real-time processing requirement of 30 fps.

The generation and processing of segmentation masks leads to a latency of 21 mil-
liseconds in the processing pipeline, which the Visual Odometry solution has to wait. To
reduce this latency we applied the mask propagation approach from Section 2.2 which
reduced the latency to 14 milliseconds on average. For usage on less powerful computers
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Figure 5. ((a)) Upper row: RPE (y-axis) over frame id (x-axis) for pairs of successive frames. Bottom

row: ratio of keypoints determined as dynamic to total number of frame keypoints (y-axis) over frame
id (x-axis). ((b)) Estimated DIR trajectory aligned with the ground truth trajectory for KITTI sequence
07.

and embedded systems, application of the mask propagation algorithm becomes crucial,
because instance segmentation networks run at less than 5 frames per second.

4. Discussion

Our analyses and experiments show that dynamic environments pose a problem to
feature-based visual localization algorithms and degrade their overall accuracy. The system
proposed as a solution to this problem demonstrates promising results by reducing the
trajectory error (both ATE and RPE) of the position solution. Furthermore, we showed
that the realization of a dynamic object removal algorithm that employs a powerful Deep
Learning model in a real-time setup is feasible on a car embedded system. Nonetheless, the
following limitations remain and will be addressed in future research efforts:

e A SLAM dataset incorporating dynamic object GT is essential for advancing research
in moving object removal approaches for VSLAM. The proposed solution making
use of Lidar data is limited to the Lidar sensor range, resulting in distant objects not
being included in the pointcloud data and, although being used by SLAM, remain-
ing unlabeled. The potential solution is to propagate the dynamic status for object
observations over frames, from close ones to distant ones.

¢  The mask prediction algorithm struggles in certain scenarios, e.g., when applied on
dynamic objects whose appearance is not cohesive over time, such as persons or
bicyclists - here the stereo depth information could be employed to cluster these
objects for mask refinement.

¢  The adopted instance segmentation network is pretrained on the large-scale image
recognition dataset COCO and although generalizing well on automotive scenes,
can be finetuned specifically for the desired operational environments for enhanced
accuracy.

¢  Traditional methods based on epipolar constraints for filtering dynamic instances are
outperformed by utilizing ground truth masks annotated solely for dynamic objects.
This motivates training a moving object segmentation network, improving visual
odometry through frontend integration.

The developed real-time capable algorithms for Visual SLAM with dynamic object
removal will be integrated into the V-ROX system, which is the enhancement of the A-ROX
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GNSS-INS positioning system, providing precise and robust localization in challenging
environments and featuring environment detection using camera and LiDAR sensors.
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Abbreviations

The following abbreviations are used in this manuscript:

ATE Absolute Trajectory Error

CNN Convolutional Neural Network

CPU Central Processing Unit

DIR Dynamic Instance Removal

DOT Dynamic Object Tracking

EU European Union

FAST Features from Accelerated Segment Test
GNSS Global Navigation Satellite System
GPU Graphics Processing Unit

GT Ground Truth

RANSAC RANdom SAmple Consensus

RMS Root Mean Square

RMSE Root Mean Square Error

ROS2 Robot Operating System 2

RPE Relative Pose Error

SLAM Simultaneous Localization and Mapping
VO Visual Odometry

VSLAM Visual Simultaneous Localization and Mapping
YOLO You Only Look Once
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