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Abstract: In intelligent vehicle navigation efficient sensor data processing and accurate sys-
tem stabilization is critical to maintain robust performance, especially when GNSS signals
are unavailable or unreliable. Classical calibration methods for Inertial Measurement Units
(IMUs), such as discrete and system-level calibration, fail to capture time-varying, nonlinear,
and non-Gaussian noise characteristics. Likewise, Kalman filters typically assume static
measurement noise levels for Non-Holonomic Constraints (NHC), resulting in suboptimal
performance in dynamic environments. Furthermore, zero-velocity detection plays a vital
role in preventing error accumulation by enabling reliable zero-velocity updates during
motion stops, but classical thresholding approaches often lack robustness and precision. To
address these limitations, we propose a novel multitask deep neural network (MTDNN)
architecture that jointly learns IMU calibration, adaptive noise level estimation for NHC,
and zero-velocity detection solely from raw IMU data. This shared-encoder design is
utilized to minimize computational overhead, enabling real-time deployment on resource-
constrained platforms such as Raspberry Pi. The model is trained using post-processed
GNSS-RTK ground truth trajectories obtained from both a proprietary dataset and the
publicly available 4Seasons dataset. Experimental results confirm the proposed system’s
superior accuracy, efficiency, and real-time capability in GNSS-denied conditions.

Keywords: Multitask; Neural Network; IMU; Non-Holonomic-Constraint; Standstill;Zero-
Velocity

1. Introduction

Reliable and robust vehicle navigation in GNSS-degraded environments, such as
tunnels, urban canyons, or indoor parking garages, is essential for autonomous driving
and ADAS, as noted by Reid et al. [1]. While techniques like Precise Point Positioning
(PPP) offer high accuracy, their performance during GNSS outages depends heavily on the
quality of complementary sensors like the Inertial Measurement Unit (IMU) [2].

Automotive IMUs are typically low-cost MEMS sensors affected by noise, scale factor
errors, and long-term bias drift. To mitigate these effects, GNSS/INS systems incorporate
auxiliary modules such as IMU calibration, zero-velocity detection, and adaptive noise level
estimation for velocity constraints. These modules can be implemented through classical
signal processing methods or learning-based techniques. However, traditional approaches
often require extensive manual tuning and prior knowledge of the system dynamics, which
limits adaptability and robustness.

In this work, we combine the three often independent deep learning architectures into
a unified Multitask Deep Neural Network (MTDNN) architecture: one for IMU denoising
and calibration (based on Brossard et al. [3]), one for adaptive noise level estimation within
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Kalman filtering (based on Brossard et al. [4]), and a third for zero-velocity detection (based
on Brossard et al. [5]). While originally developed for distinct purposes, these models are
integrated into a multitask framework tailored for vehicular use.

Our architecture features a shared-encoder that processes raw IMU data and three
task-specific decoder branches. This design enables shared parameter learning, reduces
computational load, making the system suitable for deployment on resource-constrained
platforms. The model is trained using only IMU input and supervised using ground
truth trajectories derived from GNSS-RTK and IMU fusion. We evaluate our method on
the 4Seasons, and an in-house dataset. The result is a compact, multipurpose, real-time
capable Multitask Deep Neural Network, designed to enhance navigation performance
and robustness in challenging scenarios.

This work was conducted within the EU-funded DREAM project (Driving-aids pow-
ered by E-GNSS, Al & Machine Learning, https://dream-project-eu.com/), which aims
to enhance localization and perception for public transport through robust, Al-based
navigation modules. Our contribution supports this objective by enabling high-accuracy
positioning even under degraded GNSS conditions. Both the code and the in-house dataset
will be made publicly available at https:/ /github.com/anavsgmbh/MTDNN.

The remainder of this paper presents related work (Section 2), details the proposed
multitask network and training setup (Section 3), evaluates its performance (Section 4), and
concludes with a discussion and outlook (Sections 5-6).

2. Related Work
2.1. IMU Calibration and Noise Compensation

IMUs are widely used in vehicle navigation, but their accuracy is limited by non-
Gaussian, temporally correlated noise. Classical calibration methods can be divided into
discrete calibration—often involving high-precision hardware like turntables—and system-
level approaches, typically based on Kalman filters (Huang et al. [6]; Trinh et al. [7]). These
methods either fail to capture time-dependent characteristics or struggle with nonlinear
and non-Gaussian random errors.

To overcome these limitations, several deep learning approaches have been proposed.
Brossard et al. [3] introduced a CNN-based architecture that removes both systematic
and random IMU errors. This line of research was extended by Liu et al. [8] with LGC-
Net and by Chao et al. [9] with TinyGC-Net, both targeting deployment on resource-
constrained platforms through reduced model size. Yuan and Wang [10] proposed a
simple self-supervised, non-iterative calibration technique for multi-sensor setups. Xu et
al. [11] presented a dynamic receptive field mechanism to capture long-term temporal
dependencies in IMU signals.

2.2. Zero-Velocity Detection

Zero-Velocity Updates are a well-established technique for mitigating drift in inertial
navigation systems. Wahlstrom and Skog [12] provide a comprehensive overview of
classical threshold-based methods and their limitations. In contrast, more recent research
has shifted towards machine learning-based detection. For example, Wagstaff and Kelly
[13] and Zhang et al. [14] developed LSTM-based networks for identifying zero-velocity
intervals in foot-mounted IMUs.

For wheeled vehicles, Li et al. [15] and Kilic et al. [16] combined learned stand-
still detection with Kalman and factor graph-based filtering, enhancing robustness in
GNSS-challenged environments. RINS-W, introduced by Brossard et al. [5], employs a
LSTM network to detect both zero-velocity and zero-angular-rate constraints, which are
incorporated as pseudo-measurements in a Kalman filter.
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Figure 1. Sequence of the training process of an epoch of the MTDNN.

2.3. Noise Level Adaptation for Non-Holonomic Constraints

Non-holonomic constraints (NHCs) are commonly used in GNSS/INS integration
to constrain vehicle motion, for wheeled vehicles this means enforcing zero lateral and
vertical velocity. Early integration approaches were presented by Dissanayake et al. [17]
and Jiang et al. [18], and later embedded into Kalman filter formulations (Niu et al. [19]).
In order to adapt to constraint violations the NHC are often introduced with a noise level,
which has to be manually tuned. To overcome limitations, learning-based alternatives have
been proposed. Xu et al. [20] predicted IMU-based position increments and applied NHC
filtering during GNSS outages. SdoNet, introduced by Wang et al. [21], estimates vehicle
velocity directly from IMU input and dynamically adjusts measurement noise via a learned
adapter module. Brossard et al. [4] combined a NHC noise adaption network with Kalman
filtering to enable inertial dead reckoning in GNSS-denied environments. Xiao et al. [22]
enhanced confidence estimation for NHCs using a residual attention mechanism.

3. Methodology
3.1. System Overview

In GNSS-degraded environments, robust navigation relies heavily on multiple separate
auxiliary modules such as IMU denoising, zero-velocity detection, and adaptive handling
of non-holonomic constraints (NHC). We propose to replace this fragmented architecture
with a unified multitask deep learning model that simultaneously addresses all three
components. The key idea is to exploit the fact that all three tasks share a common input
domain: the raw IMU measurements. These measurements contain rich temporal structure
and motion-related patterns that can be learned and generalized across multiple tasks.
For instance, detecting zero-velocity and identifying gyro bias both rely on recognizing
low-magnitude, stable IMU signals, suggesting that shared features can benefit both tasks
when learned jointly. The overall sequence of the training process for one epoch of the
overall system is illustrated in Figure 1.

Our approach uses a single encoder architecture to extract meaningful features from
the 6D IMU input (3D acceleration + 3D angular rate), which has to be run only once per
epoch. These shared features are then passed to three lightweight decoder branches for:

*  correcting gyroscope measurements (green pipeline in Figure 1),
*  estimating noise levels for NHC (blue pipeline in Figure 1),
* and predicting the likelihood of vehicle standstill (yellow pipeline in Figure 1).

By consolidating the tasks into a single network, we reduce the number of trainable
parameters and eliminate the need for redundant processing. This makes the system
well-suited for deployment on resource-constrained platforms like a Raspberry Pi, without
sacrificing performance.

Implementation-specific architectural choices, training strategies, and downstream
integration with the Kalman filter are described in the following subsections.
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3.2. Network Architecture

The network is defined by the four key components:

Encoder: Designed as a four-layer Temporal Convolutional Network (TCN) based on work
done by Brossard et al. ([3]). It uses 1D convolutions with increasing dilation and channel
dimension to capture temporal dependencies efficiently. All layers apply kernel size of
3, GELU activation, batch normalization, dropout, and residual connections to stabilize
learning and model multi-scale motion.

Each decoder consists of one fully connected layer, making them lightweight and computa-
tionally efficient.

Gyroscope Decoder: Outputs corrected angular velocities @, by adding the correctional

term &, estimated from the encoder outputs to the raw gyroscope measurements w™MV.

n = waLMU + 0y, (1)

o

with Cy, = SuM,, € R¥*3 accounting for gyroscope axis-misalignment and scale factors
(optimized only during training) and J, including the static and time-varying gyroscope
bias as well as noise (estimated online).

NHC Noise Level Decoder: Estimates dynamic variances for the NHC using one fully
connected network with softsign activation. Its output [z}ft, ZEP} € R? scales the baseline

covariances [Ulzat, Tap

the variance Nypc € R?2*2 used in the Kalman filter.

} € R? via a logarithmic factor, enabling a wide numerical range for

Nnpic = diag(al’gt 108 tnh(r), o2 1oﬁfa“h(25p>), with B € Rug @)

Zero-velocity Decoder: Produces a scalar activation value between 0 and 1 indicating
zero-velocity likelihood at each timestep using a sigmoid activation function. This signal
can trigger zero-velocity updates or influence the filter during motion stops.

3.3. Training Objectives

The training objective combines three loss functions, each corresponding to one of the
multitask network’s outputs. These losses are computed independently and optimized
using separate learning schedules and optimizers due to differences in convergence rates
and computational complexity. The orientation and zero-velocity losses are computed
every epoch, while the position loss is computed at scheduled intervals (every 10th epoch)
to manage training time. All three losses backpropagate through their task-specific decoder
and the shared encoder. Hence, the shared parameters are updated by every task and the
optimization is interleaved.

The gyroscope correction branch is supervised using a rotation increment loss that
compares integrated angular velocities to orientation increments derived from ground
truth orientation data. The loss formulation, used from Brossard et al. [3], computes the
error between predicted and ground truth incremental rotation matrices. The rotational
difference AR is mapped to the Lie algebra GO(3) via the logarithm map, and an Huber
loss (p(-)) is applied to the resulting vector:

Lrot = p(log(AR))

The NHC decoder is supervised by evaluating the impact of its predicted lateral
and vertical variances Nypc € R?*? in a Kalman filter. The Kalman filter, based on the
formulation from Brossard et al. [4] includes position, velocity, orientation, and IMU biases
in its state vector, and uses IMU-based prediction with NHC updates. We extend the filter
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to also include odometry as a third velocity measurement. The resulting filtered trajectory 1
xkr is compared to the ground truth trajectory xgr using the Huber loss: 164

Lpos = p(xKkF — XGT)

The zero-velocity detection decoder is trained as a binary classification task. The
output activation s € [0, 1], representing the likelihood of a standstill (zero velocity), is
compared against binary ground truth labels y € {0, 1}. These are derived by thresholding
the body-frame velocity magnitude. To penalize incorrect predictions and focus learning
on harder samples, a weighted focal loss is used with focusing parameter v = 2.0. The loss
is based on the binary cross-entropy and modulated by a factor that down-weights well-
classified examples. Additionally, class-dependent weighting « is introduced to penalize
false positives more strongly:

Lzero-velocity = “(1 - Pt)'y : BCE(S/]/)/ with pt = eXP(—BCE(S/]/))-

Here, « is a class-dependent weight set to 1.0 for zero-velocity samples (y = 1) and 10.0 for 1
motion samples (y = 0) to stronger penalize false positives. 166

3.4. Ground Truth Generation 167

Ground truth supervision relies on GNSS-RTK/INS fused data, including positions, 1
orientations, and body-frame velocities. Two datasets are used, namely the 4Seasons e
[28] and an ANavS in-house dataset. Both datasets include recordings under varying 17
environmental conditions—such as different temperatures and days or months between 1
recordings. The ANavS dataset, in particular, which was collected using a Epson M-G365 12
IMU, combined with the vehicle’s internal odometer and a Septentrio Mosaic X5 GNSS 17
receiver, includes a broad range of driving dynamics and motion patterns. Ground truth 174
trajectories were generated by a proprietary GNSS-RTK multi-sensor fusion module from s
ANavS GmbH. 176

For the gyroscope correction and NHC noise level estimation tasks, ground truth 1
signals such as orientation increments and positions are directly obtained from the fused 17
trajectories. Zero-velocity labels are derived by thresholding the body-frame velocity 17
magnitude below 0.1 km/h. Both datasets are segmented into 1-minute sequences, yielding 10
approximately 100 samples per dataset. The amount of training data is considered adequate 1
for this study. The main reason for this assumption is that the proposed network is designed 1z
to be compact, which reduces the amount of data required to fit the hypothesis class without 1
overfitting. Furthermore, the proposed design builds upon prior architectures that were  1e
trained on comparable or even smaller data volumes. For the evaluation done in Chapter 4, 1
20% of the each dataset is used as validation data. The validation data is ensured to also 1
contain a range of driving dynamics and motions patterns. Each sequence is resampled to 17
a fixed rate of 100-125 Hz and further pre-processing is applied, like removal of segments 1
without reliable trajectory information. 189

4. Results 190

For evaluation of the proposed framework, each decoder is analyzed individually 1
and in combination. Table 1 summarizes the quantitative performance across the full 1.
4Seasons and ANavS datasets, whereas Figure 2 illustrates a representative result on a single 103
sequence from the 4Seasons dataset to provide qualitative insight into the network behavior. 10
The gyroscope denoising/calibration is evaluated against raw IMU open-loop attitude, 15
following Brossard et al. [3]. A Kalman filter with additional sensors like GNSS may 16
estimate gyroscope biases, but since the network estimates the biases from the IMU data 1
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alone, such a comparison could be considered rigged. The gyroscope correction decoder
demonstrates that the network successfully learns to reduce cumulative orientation drift
without explicit knowledge of the absolute attitude. As shown in Figure 2a, the corrected
signals exhibit consistent alignment with the ground truth and remain notably stable during
standstill phase, an indication that the network captures both dynamic and quasi-static
IMU characteristics. In this particular situation, the pitch angle drift during standstill phase
of the ground truth clearly shows the limitation of the used ground truth. Quantitatively,
4Seasons shows substantial improvement, with yaw RMS error reduced by 90.4% and its
95th percentile by 87.0%. Similarly roll and pitch improve by 27.5-49.1%. On the ANavS
dataset, yaw RMS decreases by 38.7%, confirming robustness under varied motion patterns.
These results indicate that the network not only corrects for dynamic motion bias but also
attenuates long-term drift, especially in heading.

The zero-velocity decoder detects standstill phases with high fidelity, showing high
agreement with the ground truth in Table 1. In the exemplaric case (Fig. 2b), its activation
pattern is visibly narrower, reflecting increased sensitivity and reduced detection delay.
On 4Seasons, it achieves 94.7% precision and 95.9% recall while the results on the ANavS
dataset yield even higher precision (98.3%) but slightly reduced recall (87.3%), producing a
still-robust F1-score of 92.4%. This precision focused profile favors filter consistency since
false positives during motion can significantly degrade the filter, whereas missed detections
delay updates but do not introduce direct errors. A comparison to a threshold-based IMU
standstill detector is not included because adequate performance of such a threshold based
detector typically requires extensive, platform-specific tuning (mounting, vibration, low-
speed creep), which conflicts with the objective of minimizing manual tuning. Comparative
evaluations against classical gyroscope denoising/ calibration and KF-based bias estimation
are left to future work and constitute a limitation of the present study.

The NHC variance decoder is compared against a tuned static diagonal NHC covari-
ance within the same KF. The results (Fig. 2b) show that the network successfully estimates
context-aware constraint variances without requiring any manual tuning or heuristic thresh-
olding. Compared to the use of static and strongly constraining NHC variances, the learned
model reduces RMS position error on the 4Seasons dataset by 29.9% and the 95th percentile
error by 25.7%. On the ANavS dataset, the proposed model also achieves clear improve-
ments: RMS position error is reduced by 19.4%, and the 95th percentile error drops by
10.8%. These results confirm that the adaptive variance decoder provides robust results
across motion profiles, without requiring manual tuning.

Finally, the benefit of jointly learning all three tasks is evident in Figure 2c. Compared
to the raw IMU setup with static NHC (red) and the gyroscope-corrected variant still relying
on static NHC (green), the full multitask system (blue) achieves the best performance by
integrating all corrections. Furthermore the proposed multitask framework achieves even
greater parameter efficiency compared to Brossard et al. ([3] and [4]), by incorporating
residual connections into the shared encoder. While Brossard et al. use over 40,000 parame-
ters for gyroscope and NHC noise level network, our updated model requires only 12,293
in total—including all three decoders. The added tasks for zero-velocity detection and
NHC noise level estimation introduce minimal overhead (decoders total: 393 parameters).
In contrast, RINS-W [5] still uses around 370,000 parameters for zero-velocity detection
alone. Furthermore, we evaluated the model’s runtime performance on a Raspberry Pi
5 and confirmed that it achieves inference rates significantly exceeding the 125 Hz IMU
sampling frequency, demonstrating its suitability for real-time embedded deployment.
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Table 1. Evaluation on 4Seasons and ANavS datasets. For each decoder task, the performance of the

baseline and the proposed MTDNN method is compared.

Orientation Estimation

—— Ground Truth

~ 00

-- Raw IMU Output

Metric Axis | 4Seasons dataset | ANavS dataset Unit
Base Proposed | Base Proposed
Task 1: NHC Noise Adapter — 3D Position Error (after Kalman filtering)
Static  MTDNN | Static MTDNN
RMS 36.79 25.79 19.10 15.39 [m]
95 Perc. 81.05 60.24 45.40 40.49 [m]
Task 2: Gyroscope Denoiser — Orientation Error
Raw MTDNN | Raw MTDNN
RMS Roll 1.82 1.32 1.27 1.13 [°]
Pitch | 1.52 0.89 1.43 0.97 [°]
Yaw | 7.09 0.68 3.69 2.26 [°]
95 Perc.  Roll 4.57 2.98 2.70 2.42 [°]
Pitch | 3.46 1.76 2.87 1.99 [°]
Yaw | 11.95 1.55 8.67 5.88 [°]
Task 3: Zero-Velocity Detection — Classification Metrics
Precision 0.9467 0.9825 [-]
Recall 0.9595 0.8726 [-]
F1-Score 0.9531 0.9243 [-]
—— Network Corrected
Ground Truth Speed
E

zero-vel.
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—— GT Label
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=
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Figure 2. Results from the proposed MTDNN evalu

ated on a exemplary sequence of the 4Seasons

dataset: (a) Orientation estimation using the IMU measurements before and after correction by the
gyroscope decoder. (b) Results from the zero-velocity detector and the variances estimated by the

NHC decoder in relation to the ground truth speed. (
gyro-corrected IMU and fully corrected output.

¢) Resulting scalar position errors for raw IMU,
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5. Discussion

The proposed MTDNN effectively unifies IMU calibration, adaptive NHC noise level
estimation and zero-velocity detection into a compact, real-time-capable module. By ex-
ploiting shared temporal structures in raw IMU data, the shared encoder learns transferable
features that enhance all three tasks. This multitask setup improves lowers computational
cost while still achieving real-time inference on a Raspberry Pi. Quantitative results across
both datasets confirm that each decoder contributes meaningfully to the overall navigation
performance. The orientation drift is reduced through gyroscope correction, velocity errors
are minimized via the NHC noise level estimation and the zero-velocity detector reliably
enables zero-velocity-updates.

Limitations arise from the reliance on RTK-derived ground truth, which introduces
potential label noise, especially in zero-velocity classification. Generalization to highly
dynamic or off-road environments remains to be validated, as well as a detailed comparison
of the resulting network to its three separate predecessors.

The model is well-suited for embedded navigation in GNSS-degraded settings, of-
fering a lightweight alternative to multi-module pipelines. Future work will extend the
architecture to multimodal inputs (e.g., cameras, encoders) and explore self-supervised
learning to reduce dependence on high-quality ground truth.

6. Conclusions

We presented a multitask deep neural network that consolidates IMU calibration,
zero-velocity detection and adaptive NHC noise level estimation into a single module. This
design improves simplifies integration and enables real-time performance on devices with
restricted computational power. Evaluation on two datasets shows consistent improve-
ments in navigation performance. By replacing fragmented components with a unified
network, we reduce tuning effort and deployment complexity. The proposed approach
provides a scalable foundation for robust, real-time vehicle navigation.
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