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Abstract: In intelligent vehicle navigation efficient sensor data processing and accurate sys- 1

tem stabilization is critical to maintain robust performance, especially when GNSS signals 2

are unavailable or unreliable. Classical calibration methods for Inertial Measurement Units 3

(IMUs), such as discrete and system-level calibration, fail to capture time-varying, nonlinear, 4

and non-Gaussian noise characteristics. Likewise, Kalman filters typically assume static 5

measurement noise levels for Non-Holonomic Constraints (NHC), resulting in suboptimal 6

performance in dynamic environments. Furthermore, zero-velocity detection plays a vital 7

role in preventing error accumulation by enabling reliable zero-velocity updates during 8

motion stops, but classical thresholding approaches often lack robustness and precision. To 9

address these limitations, we propose a novel multitask deep neural network (MTDNN) 10

architecture that jointly learns IMU calibration, adaptive noise level estimation for NHC, 11

and zero-velocity detection solely from raw IMU data. This shared-encoder design is 12

utilized to minimize computational overhead, enabling real-time deployment on resource- 13

constrained platforms such as Raspberry Pi. The model is trained using post-processed 14

GNSS-RTK ground truth trajectories obtained from both a proprietary dataset and the 15

publicly available 4Seasons dataset. Experimental results confirm the proposed system’s 16

superior accuracy, efficiency, and real-time capability in GNSS-denied conditions. 17

Keywords: Multitask; Neural Network; IMU; Non-Holonomic-Constraint; Standstill;Zero- 18

Velocity 19

1. Introduction 20

Reliable and robust vehicle navigation in GNSS-degraded environments, such as 21

tunnels, urban canyons, or indoor parking garages, is essential for autonomous driving 22

and ADAS, as noted by Reid et al. [1]. While techniques like Precise Point Positioning 23

(PPP) offer high accuracy, their performance during GNSS outages depends heavily on the 24

quality of complementary sensors like the Inertial Measurement Unit (IMU) [2]. 25

Automotive IMUs are typically low-cost MEMS sensors affected by noise, scale factor 26

errors, and long-term bias drift. To mitigate these effects, GNSS/INS systems incorporate 27

auxiliary modules such as IMU calibration, zero-velocity detection, and adaptive noise level 28

estimation for velocity constraints. These modules can be implemented through classical 29

signal processing methods or learning-based techniques. However, traditional approaches 30

often require extensive manual tuning and prior knowledge of the system dynamics, which 31

limits adaptability and robustness. 32

In this work, we combine the three often independent deep learning architectures into 33

a unified Multitask Deep Neural Network (MTDNN) architecture: one for IMU denoising 34

and calibration (based on Brossard et al. [3]), one for adaptive noise level estimation within 35
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Kalman filtering (based on Brossard et al. [4]), and a third for zero-velocity detection (based 36

on Brossard et al. [5]). While originally developed for distinct purposes, these models are 37

integrated into a multitask framework tailored for vehicular use. 38

Our architecture features a shared-encoder that processes raw IMU data and three 39

task-specific decoder branches. This design enables shared parameter learning, reduces 40

computational load, making the system suitable for deployment on resource-constrained 41

platforms. The model is trained using only IMU input and supervised using ground 42

truth trajectories derived from GNSS-RTK and IMU fusion. We evaluate our method on 43

the 4Seasons, and an in-house dataset. The result is a compact, multipurpose, real-time 44

capable Multitask Deep Neural Network, designed to enhance navigation performance 45

and robustness in challenging scenarios. 46

This work was conducted within the EU-funded DREAM project (Driving-aids pow- 47

ered by E-GNSS, AI & Machine Learning, https://dream-project-eu.com/), which aims 48

to enhance localization and perception for public transport through robust, AI-based 49

navigation modules. Our contribution supports this objective by enabling high-accuracy 50

positioning even under degraded GNSS conditions. Both the code and the in-house dataset 51

will be made publicly available at https://github.com/anavsgmbh/MTDNN. 52

The remainder of this paper presents related work (Section 2), details the proposed 53

multitask network and training setup (Section 3), evaluates its performance (Section 4), and 54

concludes with a discussion and outlook (Sections 5–6). 55

2. Related Work 56

2.1. IMU Calibration and Noise Compensation 57

IMUs are widely used in vehicle navigation, but their accuracy is limited by non- 58

Gaussian, temporally correlated noise. Classical calibration methods can be divided into 59

discrete calibration—often involving high-precision hardware like turntables—and system- 60

level approaches, typically based on Kalman filters (Huang et al. [6]; Trinh et al. [7]). These 61

methods either fail to capture time-dependent characteristics or struggle with nonlinear 62

and non-Gaussian random errors. 63

To overcome these limitations, several deep learning approaches have been proposed. 64

Brossard et al. [3] introduced a CNN-based architecture that removes both systematic 65

and random IMU errors. This line of research was extended by Liu et al. [8] with LGC- 66

Net and by Chao et al. [9] with TinyGC-Net, both targeting deployment on resource- 67

constrained platforms through reduced model size. Yuan and Wang [10] proposed a 68

simple self-supervised, non-iterative calibration technique for multi-sensor setups. Xu et 69

al. [11] presented a dynamic receptive field mechanism to capture long-term temporal 70

dependencies in IMU signals. 71

2.2. Zero-Velocity Detection 72

Zero-Velocity Updates are a well-established technique for mitigating drift in inertial 73

navigation systems. Wahlström and Skog [12] provide a comprehensive overview of 74

classical threshold-based methods and their limitations. In contrast, more recent research 75

has shifted towards machine learning-based detection. For example, Wagstaff and Kelly 76

[13] and Zhang et al. [14] developed LSTM-based networks for identifying zero-velocity 77

intervals in foot-mounted IMUs. 78

For wheeled vehicles, Li et al. [15] and Kilic et al. [16] combined learned stand- 79

still detection with Kalman and factor graph-based filtering, enhancing robustness in 80

GNSS-challenged environments. RINS-W, introduced by Brossard et al. [5], employs a 81

LSTM network to detect both zero-velocity and zero-angular-rate constraints, which are 82

incorporated as pseudo-measurements in a Kalman filter. 83

https://dream-project-eu.com/
https://github.com/anavsgmbh/MTDNN
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Figure 1. Sequence of the training process of an epoch of the MTDNN.

2.3. Noise Level Adaptation for Non-Holonomic Constraints 84

Non-holonomic constraints (NHCs) are commonly used in GNSS/INS integration 85

to constrain vehicle motion, for wheeled vehicles this means enforcing zero lateral and 86

vertical velocity. Early integration approaches were presented by Dissanayake et al. [17] 87

and Jiang et al. [18], and later embedded into Kalman filter formulations (Niu et al. [19]). 88

In order to adapt to constraint violations the NHC are often introduced with a noise level, 89

which has to be manually tuned. To overcome limitations, learning-based alternatives have 90

been proposed. Xu et al. [20] predicted IMU-based position increments and applied NHC 91

filtering during GNSS outages. SdoNet, introduced by Wang et al. [21], estimates vehicle 92

velocity directly from IMU input and dynamically adjusts measurement noise via a learned 93

adapter module. Brossard et al. [4] combined a NHC noise adaption network with Kalman 94

filtering to enable inertial dead reckoning in GNSS-denied environments. Xiao et al. [22] 95

enhanced confidence estimation for NHCs using a residual attention mechanism. 96

3. Methodology 97

3.1. System Overview 98

In GNSS-degraded environments, robust navigation relies heavily on multiple separate 99

auxiliary modules such as IMU denoising, zero-velocity detection, and adaptive handling 100

of non-holonomic constraints (NHC). We propose to replace this fragmented architecture 101

with a unified multitask deep learning model that simultaneously addresses all three 102

components. The key idea is to exploit the fact that all three tasks share a common input 103

domain: the raw IMU measurements. These measurements contain rich temporal structure 104

and motion-related patterns that can be learned and generalized across multiple tasks. 105

For instance, detecting zero-velocity and identifying gyro bias both rely on recognizing 106

low-magnitude, stable IMU signals, suggesting that shared features can benefit both tasks 107

when learned jointly. The overall sequence of the training process for one epoch of the 108

overall system is illustrated in Figure 1. 109

Our approach uses a single encoder architecture to extract meaningful features from 110

the 6D IMU input (3D acceleration + 3D angular rate), which has to be run only once per 111

epoch. These shared features are then passed to three lightweight decoder branches for: 112

• correcting gyroscope measurements (green pipeline in Figure 1), 113

• estimating noise levels for NHC (blue pipeline in Figure 1), 114

• and predicting the likelihood of vehicle standstill (yellow pipeline in Figure 1). 115

By consolidating the tasks into a single network, we reduce the number of trainable 116

parameters and eliminate the need for redundant processing. This makes the system 117

well-suited for deployment on resource-constrained platforms like a Raspberry Pi, without 118

sacrificing performance. 119

Implementation-specific architectural choices, training strategies, and downstream 120

integration with the Kalman filter are described in the following subsections. 121
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3.2. Network Architecture 122

The network is defined by the four key components: 123

Encoder: Designed as a four-layer Temporal Convolutional Network (TCN) based on work 124

done by Brossard et al. ([3]). It uses 1D convolutions with increasing dilation and channel 125

dimension to capture temporal dependencies efficiently. All layers apply kernel size of 126

3, GELU activation, batch normalization, dropout, and residual connections to stabilize 127

learning and model multi-scale motion. 128

Each decoder consists of one fully connected layer, making them lightweight and computa- 129

tionally efficient. 130

Gyroscope Decoder: Outputs corrected angular velocities ω̂n by adding the correctional 131

term δn estimated from the encoder outputs to the raw gyroscope measurements ωIMU
n . 132

ω̂n = ĈωωIMU
n + δn, (1)

with Ĉω = ŜωM̂ω ∈ R3×3 accounting for gyroscope axis-misalignment and scale factors 133

(optimized only during training) and δn including the static and time-varying gyroscope 134

bias as well as noise (estimated online). 135

NHC Noise Level Decoder: Estimates dynamic variances for the NHC using one fully 136

connected network with softsign activation. Its output
[
zlat

n , zup
n

]
∈ R2 scales the baseline 137

covariances
[
σ2

lat, σ2
up

]
∈ R2 via a logarithmic factor, enabling a wide numerical range for 138

the variance NNHC ∈ R2×2 used in the Kalman filter. 139

NNHC = diag
(

σ2
lat 10β tanh(zlat

n ), σ2
up 10β tanh(zup

n )
)

, with β ∈ R>0 (2)

Zero-velocity Decoder: Produces a scalar activation value between 0 and 1 indicating 140

zero-velocity likelihood at each timestep using a sigmoid activation function. This signal 141

can trigger zero-velocity updates or influence the filter during motion stops. 142

143

3.3. Training Objectives 144

The training objective combines three loss functions, each corresponding to one of the 145

multitask network’s outputs. These losses are computed independently and optimized 146

using separate learning schedules and optimizers due to differences in convergence rates 147

and computational complexity. The orientation and zero-velocity losses are computed 148

every epoch, while the position loss is computed at scheduled intervals (every 10th epoch) 149

to manage training time. All three losses backpropagate through their task-specific decoder 150

and the shared encoder. Hence, the shared parameters are updated by every task and the 151

optimization is interleaved. 152

The gyroscope correction branch is supervised using a rotation increment loss that 153

compares integrated angular velocities to orientation increments derived from ground 154

truth orientation data. The loss formulation, used from Brossard et al. [3], computes the 155

error between predicted and ground truth incremental rotation matrices. The rotational 156

difference ∆R is mapped to the Lie algebra SO(3) via the logarithm map, and an Huber 157

loss (ρ(·)) is applied to the resulting vector: 158

Lrot = ρ(log(∆R))

The NHC decoder is supervised by evaluating the impact of its predicted lateral 159

and vertical variances NNHC ∈ R2×2 in a Kalman filter. The Kalman filter, based on the 160

formulation from Brossard et al. [4] includes position, velocity, orientation, and IMU biases 161

in its state vector, and uses IMU-based prediction with NHC updates. We extend the filter 162
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to also include odometry as a third velocity measurement. The resulting filtered trajectory 163

xKF is compared to the ground truth trajectory xGT using the Huber loss: 164

Lpos = ρ(xKF − xGT)

The zero-velocity detection decoder is trained as a binary classification task. The
output activation s ∈ [0, 1], representing the likelihood of a standstill (zero velocity), is
compared against binary ground truth labels y ∈ {0, 1}. These are derived by thresholding
the body-frame velocity magnitude. To penalize incorrect predictions and focus learning
on harder samples, a weighted focal loss is used with focusing parameter γ = 2.0. The loss
is based on the binary cross-entropy and modulated by a factor that down-weights well-
classified examples. Additionally, class-dependent weighting α is introduced to penalize
false positives more strongly:

Lzero-velocity = α(1 − pt)
γ · BCE(s, y), with pt = exp(−BCE(s, y)).

Here, α is a class-dependent weight set to 1.0 for zero-velocity samples (y = 1) and 10.0 for 165

motion samples (y = 0) to stronger penalize false positives. 166

3.4. Ground Truth Generation 167

Ground truth supervision relies on GNSS-RTK/INS fused data, including positions, 168

orientations, and body-frame velocities. Two datasets are used, namely the 4Seasons 169

[28] and an ANavS in-house dataset. Both datasets include recordings under varying 170

environmental conditions—such as different temperatures and days or months between 171

recordings. The ANavS dataset, in particular, which was collected using a Epson M-G365 172

IMU, combined with the vehicle’s internal odometer and a Septentrio Mosaic X5 GNSS 173

receiver, includes a broad range of driving dynamics and motion patterns. Ground truth 174

trajectories were generated by a proprietary GNSS-RTK multi-sensor fusion module from 175

ANavS GmbH. 176

For the gyroscope correction and NHC noise level estimation tasks, ground truth 177

signals such as orientation increments and positions are directly obtained from the fused 178

trajectories. Zero-velocity labels are derived by thresholding the body-frame velocity 179

magnitude below 0.1 km/h. Both datasets are segmented into 1-minute sequences, yielding 180

approximately 100 samples per dataset. The amount of training data is considered adequate 181

for this study. The main reason for this assumption is that the proposed network is designed 182

to be compact, which reduces the amount of data required to fit the hypothesis class without 183

overfitting. Furthermore, the proposed design builds upon prior architectures that were 184

trained on comparable or even smaller data volumes. For the evaluation done in Chapter 4, 185

20% of the each dataset is used as validation data. The validation data is ensured to also 186

contain a range of driving dynamics and motions patterns. Each sequence is resampled to 187

a fixed rate of 100–125 Hz and further pre-processing is applied, like removal of segments 188

without reliable trajectory information. 189

4. Results 190

For evaluation of the proposed framework, each decoder is analyzed individually 191

and in combination. Table 1 summarizes the quantitative performance across the full 192

4Seasons and ANavS datasets, whereas Figure 2 illustrates a representative result on a single 193

sequence from the 4Seasons dataset to provide qualitative insight into the network behavior. 194

The gyroscope denoising/calibration is evaluated against raw IMU open-loop attitude, 195

following Brossard et al. [3]. A Kalman filter with additional sensors like GNSS may 196

estimate gyroscope biases, but since the network estimates the biases from the IMU data 197
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alone, such a comparison could be considered rigged. The gyroscope correction decoder 198

demonstrates that the network successfully learns to reduce cumulative orientation drift 199

without explicit knowledge of the absolute attitude. As shown in Figure 2a, the corrected 200

signals exhibit consistent alignment with the ground truth and remain notably stable during 201

standstill phase, an indication that the network captures both dynamic and quasi-static 202

IMU characteristics. In this particular situation, the pitch angle drift during standstill phase 203

of the ground truth clearly shows the limitation of the used ground truth. Quantitatively, 204

4Seasons shows substantial improvement, with yaw RMS error reduced by 90.4% and its 205

95th percentile by 87.0%. Similarly roll and pitch improve by 27.5–49.1%. On the ANavS 206

dataset, yaw RMS decreases by 38.7%, confirming robustness under varied motion patterns. 207

These results indicate that the network not only corrects for dynamic motion bias but also 208

attenuates long-term drift, especially in heading. 209

The zero-velocity decoder detects standstill phases with high fidelity, showing high 210

agreement with the ground truth in Table 1. In the exemplaric case (Fig. 2b), its activation 211

pattern is visibly narrower, reflecting increased sensitivity and reduced detection delay. 212

On 4Seasons, it achieves 94.7% precision and 95.9% recall while the results on the ANavS 213

dataset yield even higher precision (98.3%) but slightly reduced recall (87.3%), producing a 214

still-robust F1-score of 92.4%. This precision focused profile favors filter consistency since 215

false positives during motion can significantly degrade the filter, whereas missed detections 216

delay updates but do not introduce direct errors. A comparison to a threshold-based IMU 217

standstill detector is not included because adequate performance of such a threshold based 218

detector typically requires extensive, platform-specific tuning (mounting, vibration, low- 219

speed creep), which conflicts with the objective of minimizing manual tuning. Comparative 220

evaluations against classical gyroscope denoising/calibration and KF-based bias estimation 221

are left to future work and constitute a limitation of the present study. 222

The NHC variance decoder is compared against a tuned static diagonal NHC covari- 223

ance within the same KF. The results (Fig. 2b) show that the network successfully estimates 224

context-aware constraint variances without requiring any manual tuning or heuristic thresh- 225

olding. Compared to the use of static and strongly constraining NHC variances, the learned 226

model reduces RMS position error on the 4Seasons dataset by 29.9% and the 95th percentile 227

error by 25.7%. On the ANavS dataset, the proposed model also achieves clear improve- 228

ments: RMS position error is reduced by 19.4%, and the 95th percentile error drops by 229

10.8%. These results confirm that the adaptive variance decoder provides robust results 230

across motion profiles, without requiring manual tuning. 231

Finally, the benefit of jointly learning all three tasks is evident in Figure 2c. Compared 232

to the raw IMU setup with static NHC (red) and the gyroscope-corrected variant still relying 233

on static NHC (green), the full multitask system (blue) achieves the best performance by 234

integrating all corrections. Furthermore the proposed multitask framework achieves even 235

greater parameter efficiency compared to Brossard et al. ([3] and [4]), by incorporating 236

residual connections into the shared encoder. While Brossard et al. use over 40,000 parame- 237

ters for gyroscope and NHC noise level network, our updated model requires only 12,293 238

in total—including all three decoders. The added tasks for zero-velocity detection and 239

NHC noise level estimation introduce minimal overhead (decoders total: 393 parameters). 240

In contrast, RINS-W [5] still uses around 370,000 parameters for zero-velocity detection 241

alone. Furthermore, we evaluated the model’s runtime performance on a Raspberry Pi 242

5 and confirmed that it achieves inference rates significantly exceeding the 125 Hz IMU 243

sampling frequency, demonstrating its suitability for real-time embedded deployment. 244
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Table 1. Evaluation on 4Seasons and ANavS datasets. For each decoder task, the performance of the
baseline and the proposed MTDNN method is compared.

Metric Axis 4Seasons dataset ANavS dataset Unit
Base Proposed Base Proposed

Task 1: NHC Noise Adapter – 3D Position Error (after Kalman filtering)
Static MTDNN Static MTDNN

RMS 36.79 25.79 19.10 15.39 [m]
95 Perc. 81.05 60.24 45.40 40.49 [m]

Task 2: Gyroscope Denoiser – Orientation Error
Raw MTDNN Raw MTDNN

RMS Roll 1.82 1.32 1.27 1.13 [°]
Pitch 1.52 0.89 1.43 0.97 [°]
Yaw 7.09 0.68 3.69 2.26 [°]

95 Perc. Roll 4.57 2.98 2.70 2.42 [°]
Pitch 3.46 1.76 2.87 1.99 [°]
Yaw 11.95 1.55 8.67 5.88 [°]

Task 3: Zero-Velocity Detection – Classification Metrics
Precision 0.9467 0.9825 [-]
Recall 0.9595 0.8726 [-]
F1-Score 0.9531 0.9243 [-]
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Figure 2. Results from the proposed MTDNN evaluated on a exemplary sequence of the 4Seasons
dataset: (a) Orientation estimation using the IMU measurements before and after correction by the
gyroscope decoder. (b) Results from the zero-velocity detector and the variances estimated by the
NHC decoder in relation to the ground truth speed. (c) Resulting scalar position errors for raw IMU,
gyro-corrected IMU and fully corrected output.
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5. Discussion 245

The proposed MTDNN effectively unifies IMU calibration, adaptive NHC noise level 246

estimation and zero-velocity detection into a compact, real-time-capable module. By ex- 247

ploiting shared temporal structures in raw IMU data, the shared encoder learns transferable 248

features that enhance all three tasks. This multitask setup improves lowers computational 249

cost while still achieving real-time inference on a Raspberry Pi. Quantitative results across 250

both datasets confirm that each decoder contributes meaningfully to the overall navigation 251

performance. The orientation drift is reduced through gyroscope correction, velocity errors 252

are minimized via the NHC noise level estimation and the zero-velocity detector reliably 253

enables zero-velocity-updates. 254

Limitations arise from the reliance on RTK-derived ground truth, which introduces 255

potential label noise, especially in zero-velocity classification. Generalization to highly 256

dynamic or off-road environments remains to be validated, as well as a detailed comparison 257

of the resulting network to its three separate predecessors. 258

The model is well-suited for embedded navigation in GNSS-degraded settings, of- 259

fering a lightweight alternative to multi-module pipelines. Future work will extend the 260

architecture to multimodal inputs (e.g., cameras, encoders) and explore self-supervised 261

learning to reduce dependence on high-quality ground truth. 262

6. Conclusions 263

We presented a multitask deep neural network that consolidates IMU calibration, 264

zero-velocity detection and adaptive NHC noise level estimation into a single module. This 265

design improves simplifies integration and enables real-time performance on devices with 266

restricted computational power. Evaluation on two datasets shows consistent improve- 267

ments in navigation performance. By replacing fragmented components with a unified 268

network, we reduce tuning effort and deployment complexity. The proposed approach 269

provides a scalable foundation for robust, real-time vehicle navigation. 270
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