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ABSTRACT
Global navigation satellite systems (GNSS) are an integral part to the functioning of various global applications including
autonomous driving, aviation, and more. However, GNSS signals are often non-authenticated and weak, making them easy to
override with stronger, false signals. While Galileo Open Service Navigation Message Authentication (OSNMA) tackles one
element of these weaknesses, several GNSS interference types remain a challenge to be solved. Any localization application
and especially if safety-critical highly depends on GNSS and thus, needs to incorporate concepts of detecting and mitigating
GNSS interference, i.e., Jamming, Meaconing, and Spoofing, to provide safe and robust position, navigation, and timing (PNT)
solutions.
To provide robustness against GNSS interference while maintaining a high accuracy, we propose to include a machine learning
based approach which utilizes not only GNSS measurements but also additional features from unaffected sensors like an IMU.
Converse to various approaches which consider only one or two features, the common processing of the features listed in the
following paragraph in a recurrent neural network (RNN) reduces the risk of false alarms and missed detection, enhancing the
system robustness against GNSS interference and maintaining high accuracy and availability.
The recurrent approach is used to include features of multiple consecutive epochs for the detection of an interference state of a
specific epoch. Including the average Carrier-to-noise ratio (C/N0) of a frequency and the corresponding Gain amplifier together
as reported by the GNSS receiver, which implements Automatic Gain Control (AGC), abrupt changes due to interference can
be detected and distinguished from a normal C/N0 drop based on signal occlusion. Cross-band carrier-phase divergence is
another phenomenon observed during e.g., spoofing. The ratio between carrier phases from signals transmitted by the same
satellite in different bands changes substantially more than under nominal conditions. Finally, the feature set is complemented
by raw IMU measurements, which serve as a robust cross-checking source given their immunity to GNSS interference.
The features are combined in a normalized label vector, where each sample is labeled by the affected carrier (e.g., GPS L1 or
GAL E6), resulting in a multi-label classification problem. In this work, we compare the results of an individual labeling based
on information of the type of interference (Jamming, Meaconing, Spoofing) and a common labeling as interference.
The proposed deep learning framework for multi-label GNSS interference detection consists of a convolutional neural network
(CNN) encoder combined with a long short-term memory (LSTM) network. It is shown that the AI-based detector effectively
classifies the interference per GNSS constellation and signal, allowing to selectively remove only the compromised signals
rather than discarding the entire solution. This targeted approach enables smarter decision-making at the GNSS Kalman filter



level.
One key aspect of our work is that the network will be trained and tested with real jammed and spoofed signals, leveraging on
the multi-sensor data recorded at Jammertest 2024. The well labeled collection of datasets is made publicly available together
with the network itself.

I. INTRODUCTION
Global Navigation Satellite Systems (GNSS) have become indispensable for modern society, underpinning positioning, nav-
igation, and timing (PNT) services across transportation, telecommunications, finance, and critical infrastructure. With
constellations such as GPS, GLONASS, Galileo, and BeiDou providing worldwide coverage, the reliability of GNSS enables
applications ranging from aviation and maritime safety to autonomous vehicles and location-based services. However, the
increasing reliance on GNSS also exposes significant vulnerabilities. Due to the weak power of GNSS signals at the Earth’s
surface and the absence of inherent authentication mechanisms, receivers are highly susceptible to deliberate interference. The
occurrence of GNSS interference is reported increasingly nowadays, not only in the military sector but also in e.g., aviation and
critical infrastructure (Felux et al., 2024; OPSGROUP GPS Spoofing Workgroup, 2024).
Three primary forms of signal-in-space attacks exist: jamming, spoofing, and meaconing. Jamming is the most direct method,
where an adversary transmits noise at GNSS frequencies, overwhelming the receiver and denying service. Spoofing is a more
sophisticated approach in which counterfeit signals are crafted to mislead a receiver into computing false positions or timing.
Meaconing differs in that authentic signals are captured and re-broadcast with a delay, tricking receivers without generating
new signals. These threats can lead to severe operational consequences, from navigation errors and loss of synchronization to
safety-critical failures in aviation, autonomous driving, and emergency services.
Over the past decade, numerous detection and mitigation strategies have been proposed. Traditional methods include moni-
toring signal-to-noise ratio (SNR), analyzing correlation peaks, and integrating data from multiple sensors or constellations.
Hardware-based countermeasures such as directional antennas and array processing can also be effective but come at the cost of
complexity and scalability. More recently, cryptographic solutions like Galileo’s OSNMA provide authentication at the message
level. While these techniques contribute to resilience, they often struggle against sophisticated spoofing and meaconing attacks
or introduce trade-offs in cost, infrastructure, and deployment feasibility. Additionally, there are multiple other approaches
to tackle interference detection at different stages in the processing chain or with different setups as e.g., with antenna array
processing, spectral analyses, or the estimation of the direction of arrival [see e.g., (Montgomery et al., 2009; Zhang et al., 2019;
Zhao et al., 2022)].
In this context and when tackling the stage of receiver measurements, machine learning and deep learning have emerged as
promising approaches for GNSS interference detection. Unlike threshold-based techniques, deep models can capture subtle,
high-dimensional patterns in the data, adapt to new attack strategies, and generalize across scenarios. Many researchers lack
comprehensive methods capable of simultaneously detecting spoofing, jamming, and meaconing across multiple constellations
in realistic conditions. In this work, we contribute at the post-correlator stage, leveraging GNSS measurements, signal charac-
teristics, and sensor fusion data.
This paper addresses these challenges by presenting a deep learning framework for multi-label GNSS interference detection.
Our model employs a convolutional neural network (CNN) encoder combined with a long short-term memory (LSTM) net-
work. The CNN extracts relevant features of data from GNSS measurement and signal characteristics as well as from IMU
measurements, and the LSTM network models the output of the CNN as a sequence. Unlike prior work that treats detection as
a binary classification problem, our approach performs multi-label classification, identifying which of the GNSS signals across
multiple constellations are affected. Consequently, the subsequent positioning algorithm can remove signals with interference
but keep using unaffected signals to remain with high accuracy and availability even in GNSS interference scenarios. Moreover,
we compare two different approaches of the multi-label classification, i.e., to treat all types of interference as one label and to
differentiate between Jamming, Meaconing, and Spoofing.
The proposed method is validated using real-world datasets collected under control but realistic spoofing and jamming scenarios,
at the Jammertest campaign 2024 in Andøya, Norway. In the experimental environment, we verified that the CNN-LSTM model
obtained values above 0.9 for precision, recall, and F1 score respectively, demonstrating the effective classification. We also
outline the challenges for future improvements.
This paper is structured as follows: Section II reviews related work on GNSS interference detection and mitigation concentrating
on machine learning approaches. Section III introduces the proposed CNN-LSTM detection framework, utilized input features
and information about the labeling. Section IV describes the various datasets from Jammertest 2024 and the experimental setup.
Section V presents the results and analysis, followed by conclusions and an overview of the next steps in Section VI.

II. RELATED WORK
Although traditional signal processing and statistical techniques have formed the basis of spoofing and jamming detection,
machine learning methods are gaining widespread popularity due to their ability to model complex patterns, adapt to unseen



attack scenarios, and improve detection accuracy (Mohanty and Gao, 2024).
Conventional machine learning methods such as Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and
linear regression have been applied to spoofing and jamming detection with notable success. For example, (Meng et al., 2021)
demonstrated that linear regression can improve spoofing detection for unmanned aerial vehicles (UAV) despite limitations in
handling nonlinear relationships. (Shafique et al., 2021) employed multiple machine learning models with K-fold validation.
Similarly, SVMs have been applied for both spoofing and jamming detection, with studies showing an effective classification of
interference signals using various entropy features (Xu et al., 2020). GMM-based clustering methods have further been used
for unsupervised spoofing detection, isolating spoofed pseudoranges from legitimate GNSS data (Feng et al., 2022).
In contrast to traditional ML approaches, deep learning techniques leverage neural architectures to automatically extract relevant
features from GNSS signals. For spoofing detection, multilayer perceptrons (MLPs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs) such as Long Short-Term Memory (LSTM) have been widely explored. (Shafiee et al.,
2017) applied an MLP-based detector using early-late phase and signal-level features, while (Manesh et al., 2019) detected
GPS spoofing with inputs consisting of pseudorange, Doppler shift, and signal-to-noise ratio. Leveraging the Cross Ambiguity
Function (CAF), (Borhani Darian et al., 2020) proposes an MLP and two classes of CNNs capable of identifying multiple peaks
in the CAF, which serve as indicators of GNSS spoofing. The combination of CNN and LSTM networks has been applied
to the classification of transient radio frequency interference, demonstrating strong capability to identify interference sources
from data in the time domain (Czech et al., 2018). Evaluated in a simulation environment with real-time UAV sensor data,
the CNN-LSTM-Attention model developed by (Wu et al., 2023) proved effective in detecting both denial-of-service and GPS
spoofing attacks. For jamming detection, (Janiar and Wang, 2024) proposed a deep reinforcement learning–based model capable
of adapting to both static and dynamic scenarios.
Important contributions are also made in the field of labeled data which is essential for the development of any type of
detector for GNSS interference. Simulation datasets as the above-mentioned work of (Wu et al., 2023) can reduce the cost of
data acquisition and processing. However, they often fail to capture the full complexity and variability of real-world GNSS
interference scenarios, which can lead to degraded model performance. To address this, several public datasets are available
for research, including TEXBAT (Humphreys et al., 2012), OAKBAT (Albright et al., 2020), and the FGI GNSS Jamming and
Spoofing Dataset Repository (FGI-JSDR) (Islam et al., 2024). However, none of them provides a set comprehensive enough for
the approach presented in this paper which requires to include multi-sensor, multi-constellation data complemented with signal
characteristics for effective classification of GNSS interference.

III. METHODOLOGY
Even if multiple researches on neural networks for GNSS interference detection are present including deep NN for automatic
feature extractions, a comprehensive approach covering different interference types as well as multi-constellation and multi-
sensor data for robustness is missing, but presented in this paper. The approach utilizes the features as outline in Sec. III.1 and is
described in detail in Sec. III.2. The proposed architecture of the NN combining a CNN with an LSTM is depicted in Sec.III.3

1. Utilized Features
As mentioned in the introduction, traditional methods rely on single or dual characteristics. One common example is the joint
analysis of the C/N0 and the receiver Gain. However, based on thresholds both neural networks and heuristic approaches
suffer from either lots of false alarms or missed detections if the methodology is restricted to very few types of input features.
Consequently, we propose to combine multiple input features from the signal characteristics, GNSS measurements, and other
sensors as outlined in Fig. 1. In addition to the already mentioned C/N0 and Gain, we use the ratio between phase measurements
of two different frequencies and double differenced measurements from multiple receivers for each tracked satellite as well as
measurements from the IMU. This subsection gives an overview to the presented input features and why they are useful to learn
patterns to detect GNSS interference.
Note that double differenced measurements are not covered in the data used in the experimental setup described in Sec. IV
because the evaluations in this paper are restricted to static data. Dynamic data is foreseen by the concept and covered in the
recorded data but will be part of future work.

Figure 1: Summary of the proposed input features for the deep neural network.



Gain amplifier: GNSS receivers, including the selected COTS, implement Automatic Gain Control (AGC), where an adaptive
gain amplifier is specifically designed to reduce quantization error. It is primarily driven by the ambient noise environment,
especially when the signal power is below the thermal noise floor. When unwanted interference occurs, AGC quickly reduces
gain in response to increased power within the GNSS band. Thus, the AGC gain value provided by the COTS receiver can be
used for interference detection.

Carrier-to-Noise Ratio (C/N0): We include the C/N0 on a per-satellite basis as it is an input feature that reacts during
transitions from or to an interfered state, but is also higher than usual once the interfered signal took over the receiver. Regarding
the transition phase, the C/N0 experience abrupt changes due to interference, which might exceed normal conditions. Detectors
that monitor these sudden shifts can help to assess interference. However, sudden changes can also happen when the environment
changes quickly under dynamic conditions. Consequently, the C/N0 can only be used in combination with other features.

Cross-band ratio of phase measurements: The ratio between carrier phase measurements from signals transmitted by the
same satellite in different bands should be relatively constant. Ionospheric delays are one source that lead to changes of the
carrier ratio (CR) over time but the dynamics of these changes are very moderate compared to the reaction of the GNSS receiver
under interference. Hence, clear carrier-phase divergence is an indicator of GNSS interference.

For an easier inspection, we use a modified version of the CR as input features. This modified value for satellite k and the signal
combination of the m-th and the first signal is given as:
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m = 106
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λ1φ

k
1

λmφk
m

− 1

)
(1)

This modified CR is shown in Fig 2 exemplarily. The dashed red lines indicate changes of the label from nominal to interference
or the other way around. For a given sequence denoted with the time of week (ToW), the reactions to interference is clearly
visible, while during nominal conditions the CR is continuous and has only a slight drift induced by the change of the ionospheric
slant delay.

Figure 2: Behavior of the modified carrier ratio for GPS L2 and a given sequence. Transitions from and to an interference state are indicated
with vertical red dashed lines.

Dual-antenna double differences of phase measurements: A time series of double-differenced (DD) phase measurements
are useful for interference detection in GNSS because it can highlight inconsistencies that arise from external disturbances.
Double differences measurements inherently remove common errors between satellites and receivers due to differentiating
measurements between the receivers in a multi-receiver setup and between satellites (with a reference satellite per constellation).
By doing so, many effects are not inducing changes of the DD measurements, isolating other effects such as interference. This



feature enhances detection accuracy by focusing on the time series of residuals, where unexpected variations are an indication
for interference. To separate between unexpected variations and variations due to changes in the dynamics, i.e., the relative
position between the two antennas in the navigation frame, the combination with IMU measurements listed below is essential.

IMU measurements: Informations from other non-GNSS sensors such as IMU measurements serve as a strong source for
cross-checking. The features are not affected by GNSS interference and provide information about changes in the dynamics.
Thus, the measurements are complementing the information about DD measurements and the CR when reacting to dynamics.

2. Two Concepts for a Multi-Label Classification for GNSS Interference
In our work, we compare two different approaches regarding the labeling and evaluate the capabilities to classify GNSS
interference properly in Sec. V. These are an individual labeling based on information of the type of interference (Jamming,
Meaconing, and Spoofing) and a common labeling as interference.

In the first approach, each recorded sample is annotated with both the type of interference (jamming (J), meaconing (M),
or spoofing (S)) and the affected carrier (e.g., GPS L1, GPS L2, GPS L5, Galileo E1, Galileo E5a, Galileo E5b). This setup
defines a multi-label classification problem, since a single sample may be associated with multiple active interference types
across different carriers.
The label vector has a length of Nlabels = Ncarriers × Ntypes. For instance, with 16 carriers and 3 interference types, the total
length is 48. The vector is ordered as follows:

[. . . , J/E1, S/E1, M/E1, J/E5a, S/E5a, M/E5a, . . . , J/L5, S/L5, M/L5 ],

where the constellations are sorted alphabetically as Beidou, Galileo, Glonass, and GPS signals. Each element is a binary
indicator that specifies whether a given carrier is affected by a particular interference type. For example, if spoofing occurs on
Galileo E1, the element S/E1 is set to 1, while all other entries remain 0. Formally, the j-th element of the label vector for
sample i is defined as

y
(1)
i,j =

{
1 if {type(j), carrier(j)} ∈ interference(i),
0 otherwise.

In the second approach, the interference types are not distinguished and the multi-label classification problem is reduced to
labels per GNSS signal. The label vector length is now Nlabels = Ncarriers and the j-th element of the label vector for sample i is
defined as

y
(2)
i,j =

{
1 if carrier(j) ∈ interference(i),
0 otherwise.

3. Network Architecture
We propose a CNN-LSTM framework shown in Figure 3 to detect GNSS interference, including spoofing, jamming, and
meaconing attacks. The input to the network is a matrix of size Ns ×Nm × 2, where Ns is the number of GNSS signals and
Nm is the number of measurements per signal. Each row corresponds to a single GNSS signal and contains the following
features: C/N0, CR, PRN, constellation identifier, frequency, AGC, sample variance, and IMU data. Note that IMU samples are
available at a higher rate than GNSS and all measurements since the last GNSS epoch are filled into the rows of the signals even
if unrelated to the signals themselves. Further note that the PRN, the constellation identifier, and the frequency are provided
such that the network can link the input to the related measurements within the sequence.
The input matrix is constructed with a fixed size chosen to accommodate the maximum number of signals observed in the
dataset. For signals or measurements that are missing, such as when a satellite is not observed or features like AGC or C/N0

are unavailable, the corresponding entries are set to zero. An additional binary mask channel is added to indicate which values
correspond to zero padding, allowing the network to distinguish valid measurements from missing data. The input is first
processed by a three-layer CNN encoder. Each convolutional layer extracts feature representations from the input, capturing
inter-signal correlations and local measurement patterns. The output of the final CNN layer is aggregated using average pooling
to produce an embedding vector summarizing the signal-level information. For temporal modeling, embeddings corresponding
to multiple consecutive timestamps are sequentially input into a LSTM network. The LSTM captures the temporal dependencies
between successive embeddings, enabling the framework to exploit dynamic patterns in the signals that indicate interference.
Finally, the LSTM output is passed through a fully connected layer to produce a multi-label classification output of size Ns

times Nc, where Nc is the number of interference classes (spoofing, jamming, and meaconing).



Figure 3: Architecture of the CNN-LSTM network

4. Loss Function
The Binary Cross-Entropy (BCE) loss function (2) combined with a Sigmoid activation function is used in this work. Unlike
categorical cross-entropy loss, the loss computed for probability of each output label is not affected by probability values for
other labels. Hence it is widely used for multi-label classification, where the probability and decision making of an input sample
belonging to a certain label should not influence the decision for another label.

L = −
C∑
i=1

wi [yi log (f(si)) + (1− yi) log (1− f(si))] (2)

where

L: The total BCE loss.

C: Number of labels (for multi-label classification).

wi: Weight for label i (e.g., for positive label balancing).

yi ∈ {0, 1}: Ground truth for label i.

si: Logit for label i (i.e., the output of the fully connected layer before applying the sigmoid).

f(si) = σ(si) =
1

1 + e−si
: Sigmoid activation function.

Each label is treated as a separate binary classification (Interference or No interference detection) task so that the binary cross
entropy loss is computed for each label and then averaged over all labelsC. For datasets with imbalanced positive (interfered) and
negative (non-interfered) samples along with some labels appearing more frequent than the others, label weights (pos weight)
are introduced in the loss function.

pos weightc =
N − Pc

Pc
(3)

N : Total number of samples in the dataset.

Pc: Number of samples where label c is positive (i.e., yic = 1).

pos weightc: Weight applied to the positive term for label c in the loss function.



5. Threshold selection
Dataset imbalance with some labels appearing more frequently than others can affect the prediction metrics. So, the decision-
making thresholds for each sigmoid output to classify a sample as belonging to one or more labels are selected based on
maximizing the F1 score on validation data, thus ensuring a balance between precision and recall for the multi-label classification
problem. This design allows the model to simultaneously detect multiple types of interference across all GNSS signals, leveraging
both the inter-signal features and their temporal evolution.
For each label c ∈ {1, 2, . . . , C}, the optimal threshold t∗c

t∗c = argmax
t∈[0,1]

F1c(t) (4)

is defined as the threshold that maximizes the F1 score

F1c(t) =
2 · Precisionc(t) · Recallc(t)
Precisionc(t) + Recallc(t)

(5)

for label c at threshold t. To have an estimate of the optimal threshold for the test data, we maximize the F1 score for the
validation dataset.

IV. DATASETS AND EXPERIMENTAL SETUP
1. Data from Jammertest 2024
We use recorded data from Jammertest 2024, a controlled large-scale campaign in Andøya, Norway. The event provides a
predefined transmission plan that specifies the interference type, time, affected carriers, and coverage area. This enables precise
ground truth labels to identify both the interference type and the affected signals. The dataset includes GNSS recordings
of jamming, spoofing, meaconing, and combined attacks across different power levels and frequency bands. The recorded
inputs include gain amplifier, carrier-to-noise ratio (C/N0), cross-band carrier-phase divergence, sample variance, and IMU
data, offering richer observables than existing datasets. A static antenna setup ensures consistent signal collection, and the
dataset is split into training and validation subsets. The Jammertest 2024 dataset provides realistic, multi-constellation, and
carrier-specific data uniquely suited for developing and evaluating our CNN-LSTM multi-label detection framework.
Ground truth labels are derived from the transmission plan and interference logs of Jammertest 2024, which specify the time,
location, interference type, and affected carriers during each experiment. By aligning this information with the measurement
timeline, each recorded sample is assigned the correct multi-label vector. This procedure ensures consistent and unambiguous
supervision for the deep learning model.
The datasets comprise measurements collected over five days. Table 1 summarizes the total recording duration per day, as well
as the duration of interference observed during the recordings.

Table 1: Recording duration and interference time during JammerTest 2024 sessions (MeasEpoch2 data).

Date Recording Duration (hours) Interference Duration (hours)
2024-09-09 5.3 2.2
2024-09-10 12.9 5.2
2024-09-11∗ 6.7∗ 0.5∗
2024-09-12 11.8 5.9
2024-09-13 4.7 2.0

∗Some of the spoofing type interference data was lost on 2024-09-11 due to issues with the data recorder based on the performed time spoofing.

2. Data Splitting
The dataset used in this work contains approximately 688,000 samples divided into training, validation, and test sets. The
training set contains around 75%, the validation set 15% and the remaining 10% of the total sample size are set as the test set.
The validation data samples are evaluated to select per-label thresholds and also to tune the hyper-parameters of our selected
model. We use two different ways to split the datasets and evaluate the respective model performance. In the first setup, the
samples are drawn at random and the input data representing different interference types is well distributed in training, validation
and test datasets. The model trained on such data is expected to achieve over-optimistic performance metrics because the model
has seen samples that are close in time to the test data and potentially correlated with it.
In the second setup, the split of samples used for training (75%), validation (15%), and testing (10%) is preserved. After
partitioning the dataset, the recorded measurements from 2024-09-09 to 2024-09-11 are used for training, from 2024-09-12 for



validation and 2024-09-13 for the test. The model trained on this setup is not expected to perform as good as the above since
the distribution of test data might be different from that of training data. The completely unseen day also covers test cases that
are different compared to the ones used for training and validation. This method is suited to evaluate how well the network
generalizes in its detection capabilities.

3. Published data
To promote open research and facilitate further advancements in the field, all datasets and the corresponding labels supporting
the results presented in this paper will be made publicly available. This open-access initiative aims to foster knowledge sharing,
enable reproducible benchmarking, and accelerates the development of robust navigation solutions. The network and labeled
data will be published at our GitHub repository.

V. RESULTS
When splitting the dataset randomly into training and test sequences, the model is able to reliably discriminate between the
different interference types. To illustrate the model behavior in more detail, Figure 4 presents the prediction output for the
random split over an exemplary two-hour test interval for the GPS L2 band. The period covers all three different interference
types. In addition to the true and predicted labels, features used as network inputs are also shown, including the average C/N0,
the AGC values, and the average modified carrier ratio as described in Sec. III.1. Note that the C/N0 and modified CR are
visualized as the signal-average but the network uses the values of each satellite individually.
The predicted labels closely follow the ground truth, showing high accuracy in distinguishing spoofing, meaconing, and jamming.
These signals illustrate how interference manifests in the physical measurements and offer valuable context for understanding
the model’s predictions. Moreover, it shall be noted that some misclassifications are also not critical for the application as in
the case where jamming is wrongly classified as meaconing. Both classifications would lead into an exclusion of the signal.

Figure 4: Model predictions for GPS L2 test data with corresponding C/N0, AGC, and carrier ratio signals using random split over a
two-hour interval, showing close agreement with ground truth for spoofing, meaconing, and jamming

To further examine the network behavior, we present detailed time series examples of individual spoofing and jamming events on
the GPS L2 signal, highlighting how the model responds to evolving interference patterns. Figure 5 shows a spoofing example
for random sampled test data. During the spoofing event, the C/N0 increases. This behavior reflects the physical effect of
spoofing, where the receiver locks onto the higher-power counterfeit signal, which is intended by the spoofer to take over GNSS
receivers, leading to an apparent signal strengthening. The model prediction closely follows the ground truth but exhibits a
latency. This latency arises because the ground truth is defined by the interference transmission schedule during the Jammertest,
while the receiver is only affected once the spoofed signal effectively captures its tracking loops.

A similar latency can also be observed during the transition back from spoofed to non-spoofed conditions. Interestingly, the
network partially learns to compensate for this effect, enabling it to predict transitions partially. This latency highlights the

https://github.com/anavsgmbh/ml-based-jamming-and-spoofing-detection


Figure 5: Model predictions for a GPS L2 spoofing example on random split test data with corresponding C/N0, AGC, and carrier ratio
signals.

Figure 6: Model predictions for a GPS L2 jamming example on random split test data with corresponding C/N0, AGC, and carrier ratio
signals.

importance of carefully labeled transitions in spoofing, jamming, and meaconing datasets to ensure that the network can rapidly
detect interference events, supporting timely downstream processing.
Figure 6 shows a corresponding jamming example. Here, the C/N0 values drop significantly, as expected for jamming
scenarios. This reflects the physical mechanism of jamming, where wide-band interference reduces the effective signal-to-noise
ratio, impairing lock maintenance in the receiver. The model predictions align closely with the ground truth, demonstrating its
ability to recognize such characteristic patterns. Several delays in the reaction of the receiver are also due to slightly increasing
power ramps or due to sweeps, both resulting in different times where the receiver is affected. This demonstrates the need for
further research to increase the classification performance by updating the labeling based on the specifics of interference test
cases.



Figure 7: Confusion Matrices for 4 different interfered signals when using randomly split dataset.

Nonetheless, the presented deep learning approach already classifies interference efficiently not only in specific scenarios but
also in general, which is depicted in Fig. 8 where the micro metrics are shown, which combine all labels. The area under curve
(AUC) for the receiver operating curve (ROC) of 0.99 and the high precision and recall values (Micro-AP = 0.952) show the
effective identification of interfered signals.

Figure 8: Micro metric combining all labels: receiver operating curve (ROC) and precision-recall (PR) curve for the random split and the
labeling approach that distinguishes between interference types.

To see the classification performance for some representative signals, the confusion matrices with true and false positives along
with true and false negatives as in Figure 7 show the prediction of the model for the individual interference types. The remaining
12 signal types interfered with jamming, spoofing and meaconing had similar values. It can be seen that the model trained and
evaluated on randomly divided train/test dataset performs better with less number of false negatives when detecting spoofing
and meaconing compared to jamming.

Using the random train and test data split, the model achieves precision and recall values exceeding 0.9 across the various GNSS
signals and interference types, as summarized in Table 2 for representative signals including GAL E1, GAL E5a, GPS L1, and
GPS L2. These results demonstrate that the network can reliably distinguish between no interference, spoofing, jamming, and
meaconing for different GNSS signals when the training and test distributions are highly similar.

Figure 9 and Table 3 with confusion matrices and performance metrics respectively correspond to the model trained and
evaluated on datasets with measurements from different days.
Converse to when the evaluation was performed with a temporally independent split, using data from the last day as the test set,
the network’s ability to distinguish between specific interference types decreases noticeably. This can be mainly seen in the bad
performance of Jamming detection. However, the model remained robust in detecting whether a GNSS signal was affected by
any interference, i.e., in the binary mode. When the output categories were grouped into a binary classification of interference
versus no interference, the network achieved precision and recall values close to and exceeding 0.9, demonstrating that it retains



Table 2: Per-signal precision, recall, and F1-score for spoofed, jammed and meaconed signal detection when using randomly split dataset.

Signal Spoofed Jammed Meaconed
Precision Recall F1 Precision Recall F1 Precision Recall F1

GAL E1 0.97 0.98 0.98 0.98 0.83 0.89 0.88 0.95 0.93
GAL E5a 0.98 0.98 0.98 0.92 0.88 0.90 – – –
GPS L1 0.99 0.99 0.99 0.93 0.88 0.91 0.88 0.94 0.91
GPS L2 0.98 0.98 0.98 0.93 0.96 0.94 0.89 0.95 0.91

strong discriminative power for interference detection at a coarser level. It shall be emphasized that the test cases in the test
datasets where different in their nature. For example, the test data had test cases with combinations of initial jamming with
spoofing which were not learned by the network. Nevertheless, based on the good metrics in the binary case, the network can
adapt to attacks that are new from its perspective.

Figure 9: Confusion Matrices for 4 different interfered signals when using an independent test dataset.

Table 3: Per-signal precision, recall, and F1-score for spoofed, jammed, meaconed and binary interfered signal detection when using an
independent test dataset.

Signal Spoofed Jammed Meaconed Binary
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

GAL E1 0.75 0.98 0.85 0.0 0.0 0.0 0.22 0.68 0.33 0.86 0.87 0.87
GAL E5a 0.83 0.98 0.93 0.0 0.0 0.0 – – – 0.96 0.8 0.87
GPS L1 0.64 0.99 0.78 0.0 0.0 0.0 0.22 0.68 0.33 0.84 0.89 0.87
GPS L2 0.83 0.98 0.9 0.0 0.0 0.0 0.22 0.68 0.33 0.97 0.85 0.9

These results have two main implications. First, for downstream GNSS data processing, a binary classification into interference
versus no interference is sufficient, since the key requirement is to detect whether a signal is disturbed rather than to identify the
exact interference type. Second, the choice of data splitting strategy is critical, as random splits can lead to overly optimistic
performance estimates, while independent test sets provide a more realistic assessment of generalization.

VI. CONCLUSION AND FUTURE WORK
This work presented a deep learning framework for multi-label GNSS interference detection based on features including GNSS
measurements, signal characteristics, and IMU measurements. The presented deep learning framework consisting of a CNN
encoder combined with an LSTM network classifies interference per GNSS signal.
The evaluation is performed with well-labeled physical data recorded at the Jammertest 2024. Using these datasets, we could
demonstrate that the proposed scheme could effectively detect GNSS interference on a per-signal basis, allowing to remove
only the affected signals selectively. Consequently, the positioning system can leverage from detailed information, maintaining
a high accuracy and availability in the presence of GNSS interference.
Comparing two presented multi-label problems, with and without distinguishing between the interference types jamming,
spoofing, and meaconing, the binary classification per signal performed superior when evaluating the performance on a testing
day and testing scenarios that were not covered by the test data. These findings highlight the challenge for the network if the
training data samples do not represent the full variability of spoofing, jamming, and meaconing attacks, which is difficult to



achieve given the wide range of possible scenarios and the challenges of reproducing and labeling them. We could demonstrate
that with the binary classification this generalization to unseen conditions is feasible. Thus, new or more complex attack
strategies, particularly in spoofing, might still be well detectable by the presented neural network.
Moreover, we could highlight challenges that arise due to the nature of different interference types such as power ramps and
sweeps in jamming scenarios. The latency of the receiver when reacting to the interference affects the labeling and thus, the
training process. This will be investigated in future research. Additional future work includes the analysis focusing more on
dynamic data and the associated challenges to know when a label should be changed because of occlusion from the jammer or
spoofer due to buildings or other parts of the environment. Ultimately, comparisons on accuracy, availability and more metrics
of the positioning algorithm when making use of the detection scheme are also planned.
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