Detection and Mitigation of Jamming, Meaconing, and Spoofing based on Machine Learning and Multi-Sensor Data

Philipp Bohlig, Jorge Morán García, Ramadevi Lalgudi, Jan Fischer (ANavS GmbH)

ION GNSS+ 2025

B4a: Navigation Resilience to Interference and Cyber-Attacks

ANavS GmbH
Advanced Navigation Solutions

How to Become Robust Against GNSS Interference

- Detection of GNSS interference can be tackled at different stages
- Our Approach: contribute to the stage after tracking with Machine Learning for GNSS interference detection based on GNSS observables, signal strength monitoring and IMU data
- ANavS positioning solutions already include
 - Propagate the GNSS receiver's capabilities
 - Consistency checks across different carriers due to multi-frequency + multi-constellation processing
 - Multi-sensor positioning solutions to bridge GNSS outages (INS, wheel-based odometry, LiDAR, Camera, LPS)
 - Galileo Open Service Navigation Message Authentication (OSNMA)

ANavS® – Advanced Navigation Solutions

- Leading company in the development of high-precision positioning systems.
- ANavS® positioning system is a modular and flexibly configurable sensor fusion of GNSS, inertial, odometry, camera and lidar measurements.
- The innovative positioning algorithms have been developed and patented by ANavS® and incorporate the latest RTK / PPP technologies (including compatibility with Galileo HAS) as well as state-of-the-art SLAM algorithms and object detection & tracking.

Products Lines:

- A-ROX: GNSS-INS tightly coupled positioning for dynamic automotive, railway and maritime applications.
- V-ROX: A-ROX + powerful 128-channel LiDAR + stereo camera, enabling e.g., SLAM-based localization for indoor or GNSS-denied environments
- G-ROX RTK reference station + cloud based RTCM service.

DREAM Project

- More information: slides of Session C1 (Wed, 11:03): Al-assisted Multi-Sensor Fusion for Enhanced Autonomous Vehicle Navigation
- DREAM aims to address the stringent requirements of ADAS systems in challenging urban environments by developing advanced Al solutions.
- Al techniques to detect spoofing, multipath and NLOS situations and ensuring correct ambiguity resolution
- Multi-sensor: IMU calibration and denoising, LiDAR/Visual SLAM (with moving objects removal)
- 3D bounding boxes for object detection and georeferenced maps

Data from Jammertest 2024

Tests

- •On Andøya, Norway, 9th 13th of September 2024
- Interference types: Low-power & high-power Jamming,
 Meaconing, Spoofing
- •3 test areas: Both **static** antenna in the main test area (1) and **dynamic test drives** with our (rented) test vehicle (all test sites)

Data collection

- Different Multi-frequency Multi-Sensor Modules:
 - •Single GNSS receiver + IMU
 - •VROX Multiple-GNSS-receivers + Multi-Sensor Fusion (GNSS+IMU+LiDar+Camera)
- Features for interference detection (see on the following slides)
- Overall, more than 50 hours of labeled data

Jamming & Spoofing Detection - Concept

- Use combination of input features which are well-known to show typical characteristics in GNSS interference scenarios + unaffected multi-sensor data (see next slide)
- Learn the reaction to different types of interference with Machine Learning (CNN + LSTM)
- Multi-Label classification: 16 signal types and 3 interference types (J- Jamming, S- Spoofing, M- Meaconing)
- Optimizing the cross-entropy-loss function

$$Loss = -\sum_{i=1}^{C} w_i y_i log(f(s_i)) + (1 - y_i) log(1 - f(s_i)), f(s_i) = \frac{1}{1 + e^{-s_i}}$$

• Weight samples based on the frequency of the specific label to account for unbalanced labelling (logarithmic adjustment)

Input Features and Data Labelling

Input features

Data Labelling:

- Generated labels for each GNSS epoch (@5 Hz) and for each type (J- Jamming, S- Spoofing and M-Meaconing) and signal based on the Transmission log and information about the vehicle's / modules' location(s)
- Example: combination of ['B2a', 'B2b', 'B3I', 'E5a', 'E5b', 'E6', 'G2', 'G3', 'L2', 'L5'] signals are jammed Label vector is as shown:

Signal	B1C	B1I	B2I	B2a	B2b	B3I	E1	E5a	E5b	E6	G1	G2	G3	L1	L2	L5
Type	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	J S M	JSM
Example	000	000	000	100	100	100	000	100	100	100	000	100	100	000	100	100

Challenges for Data Labelling

Accurate (1-second-wise) labelling of GNSS interference data

≠ Time where receiver measurements are affected and positioning performance is degraded

Reasons:

- GNSS interference might take a while to have an effect (e.g., in power ramps)
- Vehicle is not always in the affected zone
 - Due to occlusion by buildings etc. (planned to analyze visual data)
 - In specific test cases: Due to limited time handheld receivers are strong enough when passing the "parked" vehicle
- Even tough already good performance: not all wrong classification is really an issue. Thus, even better performance as in metrics

Network Architecture

Validation Approach

- Dataset ~ 688k samples
 - 75% for training ~ 516k samples
 - 15% for validation ~ 103k samples
 - 10% for testing ~ 68k samples
- Imbalanced dataset ~ 10-15 % positive samples
- Positive weights with higher value for extremely rare labels are used to handle label imbalances in the training data
- Model trained on random sequences of 10 seconds duration
- Model validated and thresholds selected based on per label threshold rendering higher f1-scores
- Model tested for metrics: Precision, F1-score, Recall and Accuracy

Visualization of Input Features: Carrier Ratio

- The carrier ratio (CR) is
 - very stable under nominal conditions
 - Reacting well to GNSS interference
- Network uses the CR on a PRN-basis, upcoming plots contain average only for easier visualization
- The modified CR values
 (satellite k, signal m) is used to have an easier inspectable range:

$$CR_m^k = 10^6 \left(\frac{\lambda_1 \phi_1^k}{\lambda_m \phi_m^k} - 1\right)$$

Visualization of Input Features

Different input features, predicted and true interference of signal GPS_L2

ION GNSS+ 2025, Detection and Mitigation of Jamming, Meaconing, and Spoofing based on Machine Learning and Multi-Sensor Data

Example for Jamming

- Working Jamming detection
- Sometimes noncritical latency of receiver reaction (see later slide)
- Sometimes conservativeness (false positives)
- Sometimes wrong classification but not critical as other positive classification

Different input features, predicted and true interference of jammed GPS_L2 signal

Example for Spoofing

Different input features, predicted and true interference of spoofed GPS_L2 signal

Latency of the Receiver

- Different types of Jamming
- Exemplarily: the reaction of the average C/N_0 for E1, L1, and L2
- The receiver reacts differently depending on the power and type:
 - Slow reaction in power ramping (zoomed part): 0.2 μW (-37dBm) to 50 W (47dBm) with 2 dB increments on L1 [power at sending antenna ~2 km away]
 - Faster reactions in burst jamming
 - Different behavior for sweeps
- Challenge for labelling and training
- Learning and Performance metrics are affected but false positives in the latency period are not critical

Metrics

Micro-averaged metrics for varying thresholds

- Micro-AP and Micro-AUC computes overall performance globally across all labels and well suited for imbalanced data
- Models with high micro-AP retrieves true positives well, with high precision and recall across all labels
- Models with high micro-AUC can rank all positive labels higher than negatives globally

Confusion Matrix - Spoofed signals

Confusion Matrix - Jammed signals

Jammed signal detection: Per-Signal Performance (TP, FP, FN, and TN)

Confusion Matrix - Meaconed signals

Meaconed signal detection: Per-Signal Performance (TP, FP, FN, and TN)

Summary & Outlook

- Invaluable multi-sensor data collected for static and dynamic cases and preprocessed for accurate labelling of various types of GNSS interference
- Well-working classification of Jamming, Meaconing and Spoofing (Micro-AUC=0.99, Micro-AP=0.952) even though we
- Baseline work with many identified challenges for upcoming research to improve detection even further
 - Refinement of labels due to latency in the receiver's reaction
 - Refinement of labels due to effects of occlusion and entering/leaving the affected area
 - Increased focus on dynamic data and positioning performance with and without MLbased interference detection
- The network and labelled data will be published at: https://github.com/anavsgmbh/ml-based-jamming-and-spoofing-detection

Contact & Project Information

Philipp Bohlig and Jorge Morán

- E-Mail: philipp.bohlig@anavs.de, jorge.moran.garcia@anavs.de
- ANavS GmbH Advanced Navigation Solutions, Munich (<u>www.anavs.com</u>)

DREAM Project

- Funded by the EUSPA as part of the Fundamental Elements Programme
- contract number: EUSPA/GRANT/03/2022.
- https://dream-project-eu.com/

DRIVING AIDS POWERED BY E-GNSS AI AND MACHINE LEARNING

