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ABSTRACT
Autonomous driving requires a precise and reliable positioning. A sensor fusion of multiple complementary sensors (e.g.
Global Navigation Satellite System (GNSS) receivers, inertial sensors, odometry, camera, Lidar, Ultra-Wide Band) is typically
performed to achieve the objectives of both high precision and high reliability.

A sensor fusion relies on an accurate knowledge of the measurement statistics. For static GNSS receivers, this assumption is
typically well justified as multipath errors are only slowly changing with time. Henkel and Sperl (2016) and Henkel et al. (2016)
showed that pseudorange multipath errors can be estimated as additional state parameters within the RTK and PPP solution.
Unfortunately, an accurate knowledge of the measurement statistics is often not available for kinematic receivers in challenging
environments: More specifically, the number of measurement epochs needed to estimate the measurement statistics is in urban
environments often much larger than the number of epochs with equal statistics, e.g. a car can pass below a tree within one
second, and thereby drive from an area with excellent satellite visibility via a severe multipath environment to another area with
very good satellite visibility. This shows the need for a verification and adaption of the GNSS measurement statistics with the
help of other sensors.

In this paper, we propose a method that checks the consistency of the error ellipsoids from different sensors by searching a
common intersection point of all ellipsoids. We provide a general numerical approach as an analytical solution exists only for
the intersection of two ellipsoids. The proposed method should be applied as part of the pre-processing to improve the statistics
of the measurements from each sensor. We show that the proposed method is numerically very efficient, i.e. it can reduce the
number of samples needed to find the intersection by up to two orders of magnitude compared to a brute-force search.

I. INTRODUCTION
A sensor fusion of GNSS RTK, INS, odometry and map matching is a popular approach for precise and reliable positioning
for autonomous driving. A tight coupling can be efficiently performed by a Kalman filter as described in Brown and Hwang
(2012). A typical challenge of the Kalman filter solution is that it underestimates the positioning accuracy. Typical reasons are
time-correlated errors (e.g. multipath), modeling errors and erroneous measurement and/ or process noise covariance matrices.
A Kalman filter propagates the statistics of the estimated states without using the measurements, i.e. it fully relies on a correct
knowledge of the measurement and process noise covariance matrices, the measurement and state space model, and the initial
uncertainty of the estimated states.



In this paper, we address the problem of imperfect knowledge of the statistics by checking the overlapping of the error ellipsoids
from at least two positioning sensors. Our method determines the existence of a common intersection area from two, three or
even more positioning sensors. We provide a numerical solution as an analytical one exists only for the intersection of two
ellipsoids. The latter one has been studied in details by Kerr (1974), Alfano and Greer (2003), Duzak (2007) and Gilitschenski
and Hanebeck (2012).

Fig. 1 visualizes our problem: Three error ellipsoids from three different positioning sensors have their individual centers,
orientation and extension. The objective is to figure out, whether there exists or not exists a common intersection area of all
ellipsoids.

Figure 1: Error ellipsoids from three different positioning sensors. The objective of this paper is to provide an efficient method for checking
the existence of a common intersection area.

This paper is organized as follows: In section II, we start with a probabilistic description of the position estimates from different
sensors. In section III, we provide a mathematical formulation of our problem. The methodology for solving the problem is
explained in section IV. The section is split into four sub-sections for the four steps of the method. Section V includes the results.
A discussion of these results and our conclusion is provided in section VI.

II. PROBABILISTIC DESCRIPTION OF POSITIONING ESTIMATES
Every positioning sensor is affected by measurement noise, and this measurement noise is typically assumed to be Gaussian
distributed. As the position estimate is typically three-dimensional, we describe it by a multi-dimensional Gaussian distribution:

f(x̂i) =
1√

(2π)k|Σx̂i
|
· exp
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T
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x̂i
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)
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where the index i ∈ {1, . . . , s} denotes the sensor (e.g. GNSS, INS, camera or LiDAR based Simultaneous Localization and
Mapping Leonard and Durrant-Whyte (1991), Ulta-Wide Band based positioning), x̂i describes its estimate, µi is the mean
value, and Σx̂i

denotes the covariance matrix of the estimate. Obviously, an estimate x̂i being close to µi is more likely than an



estimate being far from µi. We solve Eq. (1) for the argument of the exponential function to obtain:
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T
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(√
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| · f(x̂i)

)
. (2)

which corresponds to the ellipsoid equation, whereas the probability f(x̂i) controls the size of the ellipsoid. The cumulative
probability of a position estimate being outside the error ellipsoid is obtained by integration of f(x̂i) over the tail of the
distribution. This probability can be reduced by increasing α.

III. PROBLEM STATEMENT
Our objective is to find out whether the error ellipsoids from s ≥ 2 independent positioning sensors (e.g. GNSS RTK, INS,
camera SLAM, LiDAR SLAM, UWB) have a common intersection. More specifically, we would like to check, whether there
exists at least one point that completely fulfills the following set of ellipsoidal inequalities:

(x− µi)
T
Σ−1

x̂i
(x− µi) ≤ 1 ∀ i ∈ {1, . . . , s}, (3)

where x denotes the unknown position of a point within the intersection of all ellipsoids, µi denotes the known center of the
ellipsoid, and Σx̂i represents the related known covariance matrix. The outcome of the intended check is a simple binary
information about the existence or not-existence of a common intersection.

There does exist an analytical solution for s = 2. However, we are not aware of any analytical solution for s ≥ 3. The objective
of this paper is to present a numerically efficient solution that can be used for any s ≥ 2.

IV. METHODOLOGY FOR SOLVING PROBLEM STATEMENT
In this section, we present our methodlogy to solve the above problem in four steps: In the first step, we determine the
eigenvectors and eigenvalues of the inverse state covariance matrices to charaterize the bounding boxes for each ellipsoid. The
second step is the crucial one: A single tight rectangular bounding box is determined that includes the intersection area of all
ellipsoids. The Simplex algorithm as described by Murty (2000) is used to solve a constrained optimization problem. In the
third step, we compute samples from a uniform distribution within the single tight rectangular bounding box. Finally, we check
whether a sample is within all ellipsoids.

1. Determination of eigenvectors and eigenvalues of inverse state covariance matrices
As a first step, we determine the eigenvectors and eigenvalues of the inverse covariance matrix Σ−1

x̂i
, i.e.

Σ−1
x̂i

= QiΛiQ
T
i (4)

with Qi = (qi,1, qi,2, qi,3) being the matrix of orthonormal eigenvectors and Λi = diag (λ1,i, λ2,i, λ3,i) being the diagonal
matrix of eigenvalues. The orthnormal eigenvectors describe the orientation of the ellipsoids. The eigenvalues λi are related to
the semi-major axes lengths ai, bi and ci:

λ1,i =
1

a2i
, λ2,i =

1

b2i
, λ3,i =

1

c2i
. (5)

The eigenvectors and eigenvalues describe not only the ellipsoids but also their bounding boxes. More specifically, the bounding
box of ellipsoid i ∈ {1, . . . , s} is defined by 6 inequalities:

QT
i (x− µi) ≤

(
ai
bi
ci

)
and QT

i (x− µi) ≥ −

(
ai
bi
ci

)
, (6)

where x denotes an arbitrary position within the bounding box or on its edge.

2. Determination of common tight rectangular bounding box for efficient sampling
As there does not exist an analytical solution for the determination of the intersection of three or more ellipsoids, one needs to
perform a numerical sampling. One can sample the interior of each ellipsoid and check, whether there exists at least one sample



that is within all ellipsoids. However, this approach is numerically very inefficient for moderate to large error ellipsoids.

Therefore, we reduce the volume to be sampled by determining a Common Tight Rectangular Bounding Box (CTRBB) of the
ellipsoidal intersection area as shown in Fig. 2. We assume without loss of generality that the sides of the CTRBB are parallel
to the basis vectors e1 = (0, 0, 1)T, e2 = (0, 1, 0)T and e3 = (0, 0, 1)T of our coordinate frame. The starting and ending
point of the CTRBB along the axis ej , j ∈ {1, 2, 3}, are defined by a minimization/ maximization criteria and the 6s inequality
constraints of Eq. (6).

Figure 2: The intersection of the three error ellipses is shown in blue. Each individual ellipse is circumscribed by an individual bounding
box. The yellow area describes the intersection of the individual bounding boxes and includes the blue area as subset. The yellow area can be
described by linear border lines but the overall shape of it is no longer rectangular. Therefore, a Common Tight Rectangular Bounding Box
(CTRBB, shown in bold black lines) is defined, which includes the yellow area (intersection of individual bounding boxes) and blue area

(intersection of ellipsoids) as subsets.

Thus, the starting point of the CTRBB along e1 is defined as:
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)
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The ending point of the CTRBB along e1 is defined similarly as:
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In Fig. 2, the values x− and x+ describe the left and right edge of the CTRBB.



The starting and ending points of the other two sides of the CTRBB are defined accordingly:
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We solve these constrained optimization problems with the famous Simplex algorithm described by Murty (2000). If the
Simplex algorithm does not find a solution, we already know that there is no intersection between the error ellipsoids.

3. Generation of uniformly distributed samples in the common tight rectangular bounding box
In the previous step, we have determined the boundaries of the Common Tight Rectangular Bounding Box (CTRBB) that
includes the ellipsoidal intersection area. In this step, we generate uniformly distributed samples xj = (xj,1, xj,2, xj,3)

T that
are within the CTRBB, i.e.

xj,1 ∼ U
(
x−, x+

)
xj,2 ∼ U

(
y−, y+

)
xj,3 ∼ U

(
z−, z+

)
, (13)

where U(α, β) denotes the uniform distribution with lower limit α and upper limit β.

4. Checking if at least one sample fulfills all ellipsoidal inequalities
In this last step, we verify whether a determined sample xj fulfills the ellipsoidal inequalities given by:

(xj − µi)
T
Σ−1

x̂i
(xj − µi) ≤ 1 ∀ i ∈ {1, . . . , s}. (14)

Once a sample is found that fulfills all inequalities, we have proven that all ellipsoids are intersecting in at least one point.

V. RESULTS
In this section, we show the benefit of the proposed method. We consider the exemplary error ellipsoids depicted in Fig. 3. The
two left error ellipsoids are equal in all four subfigures. The right error ellipsoid of subfigure (a) is scaled byα = {1.25, 1.5, 1.75}
in the other subfigures. The figures also include the CTRBB as red box, which is mostly hidden behind the error ellipsoids.
The three error ellipsoids have a common intersection in subfigures (b), (c) and (d) but not in subfigure (a). The CTRBB exists
despite the absence of an intersection of all three ellipsoids. This shows the need of the fourth step of our methodology.



(a) α = 1.00 (b) α = 1.25

(c) α = 1.50 (d) α = 1.75

Figure 3: Exemplary error ellipsoids from three different positioning sensors. The two left error ellipsoids are equal in all four subfigures.
The right error ellipsoid of subfigure a is scaled by α = {1.25, 1.5, 1.75} in the other subfigures. Each figure also includes the CTRBB as red
box, which is mostly hidden behind the ellipsoids. The 3 ellipsoids have a common intersection in subfigures (b), (c) and (d) but not in (a).

The number of uniformly distributed samples needed to find the intersection of the 3 ellipsoids is the key parameter for analyzing
the efficiency of the method. We consider the error ellipsoids of Fig. 3 and use a maximum of 104 samples, i.e. ”no intersection”
is declared after having tested 10000 samples without finding an intersection point.

We compare the sampling of the CTRBB with the sampling of the individual bounding boxes. For the latter one, we have split the
number of samples equally over all individual bounding boxes. Fig. 4 shows the obtained result: Our proposed method reduces
the required number of samples by nearly two orders of magnitude for the mid-range values of α = {1.25, 1.50}. For α = 1,
both approaches tested 104 samples due to the lack of any common intersection point. However, a smaller number of samples
would be sufficient for the CTRBB as its volume is much smaller than the one of the individual bounding boxes. For very large
values of α, the benefit of the proposed method also reduces as the size of the intersection area increases. Nevertheless, the
proposed method is numerically very attractive as the medium range of α is practically very relevant.
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Figure 4: Number of samples needed to find intersection point for three exemplary error ellipsoids.

VI. DISCUSSION AND CONCLUSIONS
In this paper, we have provided a methodology for checking the intersection of error ellipsoids from at least two independent
positioning sensors. We believe that our approach is in particular helpful for three or more sensors as there is no analytical
solution available for these cases. The proposed method is numerically much more efficient than a brute-force sampling of the
individual error ellipsoids or there bounding boxes. The typical application of the method is the pre-processing for improving
the single sensor covariance matrices. Thereby, it is highly relevant as most sensor fusion algorithms (e.g. least-squares, Kalman
filter) fully rely on a correct knowledge of the statistics.

The proposed method can be applied to both positioning and attitude determination. In both cases, carrier phase integer
ambiguities need to be resolved to achieve a high accuracy. The ambiguity resolution related to attitude determination is
typically more reliable than for positioning as it uses prior information on the baseline length. It can be further enhanced by
including prior information on the baseline attitude as described by Henkel and Günther (2012).

The proposed method also has some limitations: The error ellipsoids are characterized by a mean value and a covariance
matrix. The mean value refers to the bias of the sensor and was assumed to be known in this paper. However, it needs to be
estimated or at least verified as well. Moreover, different sensors typically operate in different coordinate frames and the related
transformations depend on the orientation of the object.
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