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Abstract
Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase
bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations
is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies
such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined
measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each
cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference
ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing
in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements
on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock
and phase bias corrections with a precision of better than 2 cm.

Keywords Network solution · Satellite phase biases · Satellite position and clock corrections · Ambiguity fixing

1 Introduction

Precise point positioning (PPP) is becoming attractive since
the user does not need raw measurements from a reference
station. Zumberge et al. (1997) introduced PPP using precise
orbits and clocks obtained from a large network of reference
stations. Dong and Bock (1989) performed a global position-
ing system network analysis with phase ambiguity resolution
and applied it to crustal deformation studies in California.

Kouba and Héroux (2001) describe PPP including a pre-
cise modelling of satellite antenna offsets, phase wind-up
corrections, solid earth tides, ocean loading and earth rota-
tion parameters. They also assessed the performance of PPP
using IGS (International GNSS Service) products. Precise
satellite orbit and clock information can be obtained, e.g.
by the bernese GNSS software as described by Dach et al.
(2007).
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Precise knowledge of satellite phase biases is required for
PPP with integer ambiguity fixing. Gabor and Nerem (2002)
and Ge et al. (2008) used the Melbourne Wübbena combina-
tion and the ionosphere-free phase combination to determine
satellite–satellite single-difference phase biases. The estima-
tion is performed in two steps, i.e. a first step for the widelane
ambiguity fixing, and a subsequent step for fixing the nar-
rowlane ambiguities. Ge et al. (2008) applied the Melbourne
Wübbena combination and the ionosphere-free phase com-
bination to satellite–satellite single-differencemeasurements
of 450 IGS (International GNSS Service) stations. The esti-
mated phase biases varied by only 0.4 cycles per day for
some GPS satellites, and a reliable narrow ambiguity fix-
ing was demonstrated. Initial work on GPS network design
with undifferenced GPS observations was made already by
Lindlohr and Wells (1985).

Integer ambiguity resolution with undifferenced GPS
phase measurements was performed by Laurichesse and
Mercier (2007), Collins (2008) and Collins et al. (2010)
and applied to orbit determination in Laurichesse et al.
(2009). Real-time PPP with undifferenced integer ambigu-
ity resolution with experimental results was demonstrated
in Laurichesse et al. (2010). Undifferenced satellite phase
clocks, station clocks, satellite differential code/phase bias,
station differential code/ phase biases, station coordinate
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corrections, satellite orbit corrections and ambiguities are
estimated in a Kalman filter. The same combinations as in
Ge et al. (2008) were used, but undifferenced measurements
were processed. Laurichesse et al. (2010) analysed also the
evolution of the narrowlane pseudorange minus phase biases
over the whole year 2008 for all GPS satellites. They distin-
guished between blocks IIA and IIR satellites and observed
a drift of only 3 narrowlane cycles per year. Wen et al.
(2011) proposed to estimate the undifferenced satellite phase
biases, non-dispersive geometry correction terms including
their time derivatives, slant ionospheric delays and carrier
phase ambiguities in a Kalman filter. The ambiguity fixing
was triggered based on the stability of the float solution and
the statistics of the Kalman filter. The method was applied
to the regional network of SAPOS reference stations in Ger-
many.

More recent work on PPP includes triple-frequency GPS
precise point positioning with rapid ambiguity resolution of
Geng and Bock (2013), the analysis on the estimability of
parameters in undifferenced, uncombined GNSS networks
of Odijk et al. (2016), and the performance analysis of real-
time precise point positioning using IGS real-time service of
Elsobeiey and Al-Harbi (2016).

Carrier phase integer ambiguity fixing is essential for
precise satellite phase bias estimation. Blewitt (1989) pro-
posed a sequential ambiguity fixing, which partially exploits
the correlation between float ambiguities. The correlation
was obtained from a triangular decomposition of the float
ambiguity covariance matrix. Teunissen (1995) developed
the famous Least-squares AMBiguity Decorrelation Adjust-
ment (LAMBDA) method to solve the integer least-squares
problem. The LAMBDA method includes an integer decor-
relation and a sequential tree search to find the integer
ambiguities which minimize the sum of squared ambigu-
ity residuals. Teunissen (1998) provides an expression for
the success rate of integer bootstrapping based on the cumu-
lative Gaussian distribution. Brack et al. (2014) proposed a
sequential best-integer equivariant (BIE) estimator for high-
dimensional integer ambiguity fixing. The authors performed
n one-dimensional searches instead of one n-dimensional
search, which is much more efficient. The sequential BIE
was used for satellite phase bias estimation with 20 reference
stations. Henkel et al. (2016) developed an ambiguity trans-
formation for GLONASS double difference carrier phase
measurements to enable integer ambiguity fixing for FDMA-
modulated signals. The transformation is used for joint
ambiguity fixing of GPS and GLONASS.

The estimation of satellite position, clock and phase
bias corrections with today’s orbit determination software
packages (e.g. GIPSY, bernese GNSS software) has sev-
eral weaknesses: first, the clustering of the receivers and
the parameter mapping have not yet been optimized from
a global perspective of ambiguity fixing. Therefore, the inte-

ger property of ambiguities has not yet been fully exploited.
Moreover, the ambiguity fixing for global network solutions
has not yet been performedwith integer decorrelation despite
the strong correlations between ambiguities.

In this paper, we provide a method for the estimation of
satellite phase biases, satellite position and clock corrections
with undifferenced and uncombinedmeasurements that over-
comes the previous shortcomings by an optimized clustering,
an optimized parameter mapping and an ambiguity fixing
with integer decorrelation. Themethod uses a global network
of reference stations and consists of three steps as shown in
Fig. 1.

The first step includes the optimization of the clusters
based on the coordinates of the reference stations. In the
second step, satellite position, clock and phase bias cor-
rections are estimated with an individual Kalman filter and
ambiguity fixing for each cluster. The third step includes
the combination of the individual cluster solutions by least-
squares estimation and ambiguity fixing. Thereby, one cluster
has to serve as reference cluster, which we highlighted in
orange. The Kalman filter and single-epoch least-squares
estimation process the measurements epoch by epoch, i.e.
the method can be used for both real-time processing and
post-processing.

We perform a clustering of the global receiver network for
the following reasons:

– selection of common reference satellite and common ref-
erence receiver for all measurements is only feasible with
regional coverage

– common visibility at reference receiver and any other
receiverwithin a cluster enables expressionof real-valued
undifferenced ambiguity/phase biases of any receiver
in terms of real-valued undifferenced ambiguity/phase
biases of reference receiver and of double difference inte-
ger ambiguities

– reduced dimensions of measurements and states within
each cluster enables integer ambiguity decorrelation and
fixing

– selection of a receiver-independent reference satellite
enables a transformation instead of a re-estimation of
receiver and satellite clock offsets, receiver phase biases
and double difference integer ambiguities in case of
changing reference satellite

Thenext sectiondescribes the criteria for cluster optimization
and the mapping of receivers to clusters.

2 Cluster optimization

In this section, we describe the cluster optimization, i.e. the
determination of the optimized number of clusters and their
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Fig. 1 Functional diagram for the estimation of satellite position, clock and phase bias corrections with clustering of the receivers and integer
ambiguity fixing

regions.We consider only non-overlapping clusters, i.e. each
receiver is mapped to only one cluster. A large number of
receivers per cluster is attractive since it enables a more
accurate estimation of the respective satellite position, clock
and bias corrections. Moreover, short distances between the
receivers enable a fast fixing of the carrier phase ambiguities.
A second objective of the cluster optimization is to have a
large number of commonly visible satellites within a cluster.
This common satellite visibility is desired since only double
difference ambiguities can be fixed to integers within each
cluster. This second objective limits the size of each cluster.
Moreover, two additional constraints need to be considered:
first, there is a minimum number of receivers per cluster to
obtain a full-rank system of equations. Secondly, a mini-
mum distance of the receivers within each cluster is required
to enable a separation of satellite position and clock offset
corrections and tropospheric zenith delays.

The minimum number of receivers per cluster follows
from the number of measurements and the number of
unknowns related to one particular satellite: we use the code
and carrier phasemeasurements of R receivers onM frequen-
cies leading to 2RM measurements per epoch. The satellite
position, clock offset, phase and code bias corrections and
ionospheric delays lead to a set of 4 + M + (M − 2) + R
unknown parameters per satellite and per epoch. More-
over, there are MR unknown ambiguities per satellite. Thus,
the minimum number of receivers for measurements of
Nep epochs is given by R ≥ (

(4 + M + (M − 2))Nep
)
/(

2MNep − Nep − M
)
. This leads to a minimum of 6

receivers for dual-frequency single- epochmeasurements and
to a minimum of 4 receivers for triple-frequency single-
epoch measurements. These constraints are relaxed to some
extent by the use of prior information on the satellite position
and clock offsets. Nevertheless, we impose a constraint of at
least 4 receivers per cluster to reduce the dependency on the
prior information.

Each cluster is defined by its reference receiver ref(c),
which is located in the middle of the cluster. The selection of
the reference receivers is part of the global cluster optimiza-
tion. In principle, any receiver r ∈ {1, . . . , R} can serve as
reference receiver.

A cluster includes all receivers that are closer to the
cluster’s reference receiver than to the reference receiver
of any other cluster. This unique mapping of each receiver
r ∈ {1, . . . , R} to one cluster c ∈ {1, . . . ,C} is denoted by:

r → copt = argmin
c

∥
∥xr − xref(c)

∥
∥2 , (1)

with xr being the position of the r th receiver and xref(c) being
the position of the reference receiver of cluster c.

The cluster optimization needs to consider the contrary
objectives of maximizing the number of receivers per cluster
and maximizing the common satellite visibility. Both objec-
tives are addressed in the measurement density defined as

ρc(ref(c)) = 1

Ac

Rc∑

r=1

Kc
r ,ref(c), (2)
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Fig. 2 Global network of IGS stations, split into 16 clusters centred
around the densest areas of reference stations. The reference receiver
of each cluster is marked with a blue circle. The number of receivers
per cluster is provided in the upper left of corner of each cluster

with the cluster’s area Ac, the number of receivers Rc of the
cluster, and the number of jointly visible satellites Kc

r ,ref(c)
at receiver r and at the reference receiver. The normaliza-
tion with the area penalizes for receivers that are far from
the reference receiver and, thus, have only a reduced num-
ber of jointly visible satellites. The mapping of receivers to
clusters needs to be optimized from a global perspective. We
determine the number of clusters and the reference receiver
of each cluster by maximizing the sum of measurement den-
sities from all clusters:

max
C

(

max
ref(1),...,ref(C)

C∑

c=1

ρc (ref(c))

)

s. t. Rc ≥ Rc
min ∀ c ∧ Ac ≥ Ac

min ∀ c, (3)

with the constraints on the minimum number of receivers
Rc
min and minimum area Ac

min for each cluster.
The input for the cluster optimization is the coordinates

of the reference stations. We consider the 424 stations of
the International GNSS Service [see Dow et al. (2009)] and
impose a minimum of 4 receivers per cluster, and aminimum
length of 1000 km in both lateral and longitudinal directions
for each cluster.

Figure 2 shows the optimized map with the locations of
the 424 IGS stations. We obtained 16 clusters centred around
the densest areas of reference stations. The reference receiver
of each cluster is marked with a blue circle. The number of
receivers per cluster is provided in the upper left of corner
of each cluster. The Central European Cluster with 55 ref-
erence station is selected as reference cluster (highlighted
with orange box) due to the maximum number of receivers
within this cluster. A few stations located in Antarctica and
some Pacific islands (e.g. Galapagos) were disregarded due
the sparsity of these areas.

3 Measurement model

In this section, the measurement model for uncombined
and undifferenced carrier phase and pseudorange observa-
tions is provided. The carrier phase measured at receiver
r ∈ {1, . . . , R} on frequency m = {1, . . . , M} of satellite
k = {1, . . . , K } is modelled as

λmϕk
r ,m = (ekr )

T
(
(xr + ΔxET,r ) − (x̂kr + Δxk)

)

+ c
(
δτr −

(
δτ̂ k + Δδτ k

))

+ mT(Ek
r )Tz,r − q21m I

k
r ,1

+ λm

(
Δϕk

PW,r + Δϕk
PCO,r ,m + Δϕk

PCV,r ,m

)

+ λm

(
Nk
r ,m + βr ,m − βk

m

)
+ εkr ,m ∀ r ,m, k,

(4)
with the wavelength λm , the carrier phase measurement ϕk

r ,m
as provided by the phase locked loop in units of cycles,
the line of sight vector ekr pointing from the satellite to the
receiver, the receiver position xr , the Earth tides ΔxET,r ,
the satellite position estimate x̂kr at the time of signal trans-
mission (depending on the signal propagation time and,
therefore, on the receiver’s position) obtained, e.g. from the
broadcast orbits, the correction Δxk of the satellite position
estimate, the speed of light c, the receiver clock offset δτr ,
the satellite clock offset estimate δτ̂ k as provided, e.g. by
the broadcast clocks, the satellite clock correction Δδτ k , the
tropospheric mapping function mT depending on the eleva-
tion angle Ek

r , the tropospheric zenith delay Tz,r , the ratio of
frequencies q1m = f1/ fm , the ionospheric slant delay I kr ,1
on f1, the phase wind-up Δϕk

PW,r , the antenna phase cen-

tre offset Δϕk
PCO,r ,m and variation Δϕk

PCV,r ,m , the integer

ambiguity Nk
r ,m , the receiver and satellite phase biases βr ,m

and βk
m in units of cycles and phase noise εkr ,m . The satellite

position correction Δxk is modelled in the RIC (radial, in-
track, cross-track) frame and subsequently transformed to the
ECEF (Earth-Centred Earth-Fixed) coordinate frame based
on the satellite’s attitude.

The pseudoranges are modelled similarly as

ρk
r ,m = (ekr )

T
(
(xr + ΔxET,r ) − (x̂kr + Δxk)

)

+ c
(
δτr −

(
δτ̂ k + Δδτ k

))

+ mT(Ek
r )Tz,r + q21m I

k
r ,1

+ λm

(
Δϕk

PCO,r ,m + Δϕk
PCV,r ,m

)

+ br ,m − bkm + Δρk
MPr ,m + ηkr ,m ∀ r ,m, k, (5)

with the code biases br ,m and bkm , the pseudorange multipath
Δρk

MPr ,m
and the pseudorange noise ηkr ,m .

The raw carrier phases are corrected for the known param-
eters of the receiver’s position, the Earth tides, the estimated
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satellite position and clock offset, the phase wind-up, the
phase centre offset and variation:

λm ϕ̃k
r ,m = λmϕk

r ,m − (ekr )
T((xr + ΔxET,r ) − x̂kr )

+ cδτ̂ k − λm

(
Δϕk

PW,r + Δϕk
PCO,r ,m + Δϕk

PCV,r ,m

)
.

(6)

Similarly, the pseudoranges are corrected as:

ρ̃k
r ,m = ρk

r ,m − (ekr )
T((xr + ΔxET,r ) − x̂kr )

+ cδτ̂ k − λm

(
Δϕk

PCO,r ,m + Δϕk
PCV,r ,m

)
. (7)

4 Parameter mapping

In this section, we introduce a parameter mapping that (a)
combines some of the above parameters in order to obtain a
full-rank system of observation equations and (b) combines
ambiguities mainly with ambiguities to preserve their inte-
ger property. The theoretical framework for the parameter
mapping is given by the S-system theory of Baarda (1973),
which has been used by Odijk et al. (2016) to determine
the estimable parameters in GNSS networks using undiffer-
enced and uncombinedmeasurements. Themapping requires
the selection of a reference receiver and reference satellite
being denoted by the lower/upper index ref. As the refer-
ence receiver and reference satellite are cluster dependent,
we introduce the index c = {1, . . . ,C} to denote all cluster-
dependent parameters.

The rank defect of the absolute clock offset estimation is
prevented by mapping the satellite clock offset of the refer-
ence satellite ref(c) of cluster c to the receiver clock offset,
i.e.

δτ̃r ,c := δτr − Δδτ ref(c) ∀ r , c. (8)

The clock offsets of the other satellites are adjusted, respec-
tively:

Δδτ̃ kc := Δδτ k − Δδτ ref(c) ∀ k, c. (9)

The clock offset and ionospheric delay are two parameters
per satellite and, therefore, can absorb the code biases br ,m
and bkm of the first two frequencies:
⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

br ,1 − bk1

br ,2 − bk2

br ,3 − bk3

...

br ,M − bkM

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎠

= Λ

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

bδτr − bΔδτ k

bI kr ,1
b̃r ,3 − b̃k3
...

b̃r ,M − b̃kM

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

, (10)

where bδτr , bΔδτ k and bI kr ,1
decribe the biases of the receiver

clock offset, satellite clock offset and ionospheric delay due
to the absorption of code biases. The mapping matrix Λ is
given by

Λ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 1 0 · · · 0
1 q212 0 · · · 0
1 q213 1 0
...

...
. . .

1 q21M 0 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(11)

Solving for the biases of the clock offsets and ionospheric
delays gives:

⎛

⎜⎜
⎜⎜⎜⎜
⎝

bδτr − bΔδτ k

bI kr ,1
b̃r ,3 − b̃k3
...

b̃r ,M − b̃kM

⎞

⎟⎟
⎟⎟⎟⎟
⎠

= Λ−1 ·

⎛

⎜
⎜⎜⎜⎜
⎝

br ,1 − bk1
br ,2 − bk2
br ,3 − bk3
...

br ,M − bkM

⎞

⎟
⎟⎟⎟⎟
⎠

. (12)

The receiver clock offset of Eq. (8) is extended to:

cδ ˜̃τr ,c := c
(
δτr − Δδτ ref(c)

)
+

M∑

m=1

γ1m · (br ,m − bref(c)m ),

(13)

with γ1m being the element of the first row and mth column
of Λ−1. The satellite clock offsets of Eq. (9) are adjusted,
respectively, i.e.

cΔδ ˜̃τ k,c := c
(
Δδτ k − Δδτ ref(c)

)
+

M∑

m=1

γ1m ·(bkm−bref(c)m ).

(14)

The slant ionospheric delay is adjusted similarly as:

Ĩ kr ,1 := I kr ,1 +
M∑

m=1

γ2m · (br ,m − bkm), (15)

with γ2m denoting the element of the second row and mth
column of Λ−1.

The estimation of an individual receiver phase bias for
each receiver, of an individual satellite phase bias for each
satellite, and of an individual integer ambiguity for each link
is not feasible due to a rank deficiency. We perform the fol-
lowing parameter mappings to overcome the rank defect:

– mapping of the phase bias of the reference receiver
to the satellite phase biases
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– mapping of the ambiguities of the reference receiver
to the satellite phase biases

– mapping of the ambiguities of the reference satellite
to the receiver phase biases

Additionally, the phase biases have to be corrected for the
code biases being mapped into the clock offsets and iono-
spheric delay. Thus, the receiver phase biaswith lumped code
biases and ambiguities of reference receiver and satellite is
given by

λm β̃r ,c,m := λm
(
βr ,m − βref(c),m

)

−
M∑

m=1

γ1m · (br ,m − bref(c),m)

+
M∑

m=1

q21m · γ2m · (br ,m − bref(c),m)

+ λm

(
N ref(c)
r ,m − N ref(c)

ref(c),m

)
∀ r , c,m. (16)

The satellite phase bias is adjusted, respectively, i.e.

λm β̃k,c
m := λm

(
βk
m − βref(c),m

)
−

M∑

m=1

γ1m · (bkm − bref(c),m)

+
M∑

m=1

q21m · γ2m · (bkm − bref(c),m)

− λmN
k
ref(c),m ∀ k, c,m. (17)

Each integer ambiguity is related to the integer ambiguity
of the reference receiver and reference satellite, which results
in the well-known double difference integer ambiguity:

Ñ k̄r
r ,c,m := (Nk̄r

r ,m−N ref(c)
r ,m )−(Nk̄r

ref(c),m−N ref(c)
ref(c),m) ∀r , c, k̄,

(18)

where k̄r ∈ {1, . . . , Kr } denotes the visible satellites at
receiver r .

The corrected undifferenced carrier phase and pseudor-
angemeasurements of Eqs. (6) and (7) are expressed in terms
of the reduced parameter set, i.e. as a function of the satellite
position correction Δxk , the zenith tropospheric delay Tz,r ,
the slant ionospheric delay Ĩ kr ,1 with mapped code biases
of Eq. (15), the receiver and satellite clock offset correc-
tions δ ˜̃τr ,c and Δδ ˜̃τ k,c with mapped code biases of Eqs. (13)
and (14), the receiver and satellite phase bias corrections
β̃r ,c,m and β̃

k,c
m with mapped phase biases, code biases and

ambiguities of Eqs. (16) and (17), and the double difference
integer ambiguities Ñ k

r ,c,m ofEq. (18). The resulting full-rank
observation equations are provided in Eqs. (19) and (20).
Some parameters vanish and are not estimated for r = ref
or k = ref since the respective parameters were mapped to
other parameters.

λm ϕ̃k
r ,m = (ekr )

T(−Δxk) + mT(Ek
r )Tz,r − q21m Ĩ

k
r ,1

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(δ ˜̃τr ,c − Δδ ˜̃τ k,c) +λm(β̃r ,c,m −β̃
k,c
m + Ñ k

r ,c,m) +εkr ,m r �= ref, k �= ref
cδ ˜̃τr ,c +λm(β̃r ,c,m −β̃

k,c
m ) +εkr ,m r �= ref, k = ref

c(δ ˜̃τr ,c − Δδ ˜̃τ k,c) −λm β̃
k,c
m +εkr ,m r = ref, k �= ref

cδ ˜̃τr ,c −λm β̃
k,c
m +εkr ,m r = ref, k = ref.

(19)

ρ̃k
r ,m = (ekr )

T(−Δxk) + mT(Ek
r )Tz,r + q21m Ĩ

k
r ,1

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(δ ˜̃τr ,c − Δδ ˜̃τ k,c) +Δρk
MPr ,m

+ηkr ,m r �= ref, k �= ref

cδ ˜̃τr ,c +Δρk
MPr ,m

+ηkr ,m r �= ref, k = ref

c(δ ˜̃τr ,c − Δδ ˜̃τ k,c) +Δρk
MPr ,m

+ηkr ,m r = ref, k �= ref

cδ ˜̃τr ,c +Δρk
MPr ,m

+ηkr ,m r = ref, k = ref.

(20)
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5 Cluster solution with Kalman filter

In this section, we briefly describe the estimation of satellite
positions, clock offsets and phase biases for an individual
cluster.

The corrected carrier phase and pseudorange measure-
ments of all receivers r ∈ {1, . . . , R} and frequencies m ∈
{1, . . . , M} in cluster c of a certain epoch are stacked in a
column vector, i.e.

zc =
(
λ1ϕ̃

1
1,1, . . . , λ1ϕ̃

K
1,1, . . . , λ1ϕ̃

1
R,1, . . . , λ1ϕ̃

K
R,1, . . .

λM ϕ̃1
1,M , . . . , λM ϕ̃K

1,M , . . . , λM ϕ̃1
R,M , . . . , λM ϕ̃K

R,M ,

ρ̃1
1,1, . . . , ρ̃

K
1,1, . . . , ρ̃

1
R,1, . . . , ρ̃

K
R,1, . . . ,

ρ̃1
1,M , . . . , ρ̃K

1,M , . . . , ρ̃1
R,M , . . . , ρ̃K

R,M

)T
. (21)

Similarly, all unknowns of cluster c are stacked in the state
vector xc given by

xc =
(
xcreal
xcint

)
(22)

with the real-valued state parameters

xcreal =
(
(Δx1)T, . . . , (ΔxK )T,

cδ ˜̃τ1,c, . . . , cδ ˜̃τR,c, cΔδ ˜̃τ 1,c, . . . , cΔδ ˜̃τ K ,c,

Tz,1, . . . , Tz,R,

Ĩ 11,1, . . . , Ĩ
K
1,1, . . . , Ĩ

1
R,1, . . . , Ĩ

K
R,1,

β̃1,c,1, . . . , β̃R,c,1, . . . , β̃1,c,M , . . . , β̃R,c,M ,

β̃
1,c
1 , . . . , β̃

K ,c
1 , . . . , β̃

1,c
M , . . . , β̃

K ,c
M

)T
, (23)

and the integer-valued state parameters

xcint =
(
Ñ 1
1,c,1, . . . , Ñ

K
1,c,1, . . . , Ñ

1
R,c,1, . . . , Ñ

K
R,c,1, . . . ,

Ñ 1
1,c,M , . . . , Ñ K

1,c,M , . . . , Ñ 1
R,c,M , . . . , Ñ K

R,c,M

)T
.

(24)

The conditioning of the system of observation equations
can be substantially improved by using prior information on
the state parameters. The satellite positions and clock offsets
are known, e.g. from the broadcast orbits with an accuracy of
1 m and 1.5 m. Blind tropospheric models (i.e. without using
current meteorological observations) provide the hydrostatic
part of the tropospheric delay with centimetre-level accu-
racy. The fractional part of the satellite phase biases is in the
order of a few centimetres. The ionospheric delay could be
obtained from any local augmentation service with centime-
tre accuracy or from the Klobuchar model with meter-level

accuracy. Therefore, we introduce some prior knowledge on
these state parameters:

x̄ c =
(
(Δx̄1)T, . . . , (Δx̄K )T,

cΔδ ˜̄τ 1,c, . . . , cΔδ ˜̄τ K ,c,

T̄z,1, . . . , T̄z,R, ˜̄I 11,1, . . . , ˜̄I K1,1, . . . , ˜̄I 1R,1, . . . ,
˜̄I KR,1,

˜̄β1,c,1, . . . ,
˜̄βR,c,1, . . . ,

˜̄β1,c,M , . . . , ˜̄βR,c,M ,

˜̄β1,c
1 , . . . , ˜̄βK ,c

1 , . . . , ˜̄β1,c
M , . . . , ˜̄βK ,c

M

)T
, (25)

with a priori known covariance matrix Σx̄ c . As the orbital
errors are small compared to the receiver–satellite ranges, it
can be assumed that both measurements and prior informa-
tion are linear functions of the state vector of Eq. (23). Thus,
zc and x̄ c are combined to

(
zc

x̄c

)
= (

Hc
real, H

c
int

) (
xcreal
xcint

)
+

(
ηcz
ηcx̄

)
, (26)

where the state-to-measurement mapping matrices Hc
real and

Hc
int are implicitly defined by Eqs. (19) and (20) and ηcz and

ηcx̄ denote the measurement noise and error of the prior infor-
mation.We assume that both errors can bemodelled bywhite
Gaussian noise and refer to Bryson and Henrikson (1968) for
precise modelling of coloured noise.

We use a standard Kalman filter [see Brown and Hwang
(2012)] to estimate xc from the extended measurement vec-
tor and denote the resulting state estimate by (x̂ c)+. The
estimated state vector also includes M ·∑R

r=1,r �=ref (Kr − 1)
double- difference ambiguities. A typical cluster with R =
40 dual-frequency receivers and an average of 9 visible satel-
lites per receiver results in 2 · (40−1) · (9−1) = 624 double
difference ambiguities. The large number of a few hundreds
of ambiguities puts some computational constraints on the
fixing. Unfortunately, a tree search as used in the Least-
squares AMBiguity Decorrelation Adjustment (LAMBDA)
method of Teunissen (1995) is no longer feasible. However,
a sequential fixing with integer decorrelation is still feasible.
The fixed ambiguities are obtained as

ˇ̃Nc = Z−1
c Fc

(
Zc

ˆ̃Nc

)
, (27)

with the integer decorrelation transformation Zc, the fix-

ing Fc and the float ambiguity estimates ˆ̃Nc. The latter
one includes the float double- difference ambiguities of all
receivers, frequencies and satellites of cluster c, i.e.

ˆ̃Nc =
( ˆ̃N 1

1,c,1, . . . ,
ˆ̃NK
1,c,1, . . . ,

ˆ̃N 1
R,c,1,

. . . ,
ˆ̃NK
R,c,1, . . . ,

ˆ̃NK
R,c,M

)T
. (28)
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The integer decorrelation Zc is given by Teunissen (1995) as
an alternating sequence of a pairwise integer decorrelation
Zi
c and permutation Pi

c , i.e.

Zc =
niter∏

i=1

Zi
c P

i
c . (29)

The number of iterations niter grows exponentially with the
number of ambiguities. However, a partial integer decor-
relation with a limited number of iterations is still always
feasible.Henkel andGünther (2010) have shown that a partial
integer decorrelation enables an attractive trade-off between
variance reduction and bias amplification for bootstrapping.
The fixing Fc includes a sequential rounding of the condi-
tional float ambiguities to the nearest integer number:

ˇ̃Nk
r ,c,m = Fc

( ˆ̃Nk|1,...,k−1
r ,c,m

)
=

[ ˆ̃Nk|1,...,k−1
r ,c,m

]
, (30)

where the kth conditional float ambiguity estimate is given
by Blewitt (1989) as

ˆ̃Nk|1,...,k−1
r ,c,m = ˆ̃Nk

r ,c,m −
k−1∑

j=1

γ
k j
r ,c,m(

ˆ̃N j |1,..., j−1
r ,c,m − [ ˆ̃N j |1,..., j−1

r ,c,m ]), (31)

with the coefficient

γ
k j
r ,c,m = σ ˆ̃Nk

r ,c,m
ˆ̃N j |1,..., j−1
r ,c,m

/σ 2
ˆ̃N j |1,..., j−1
r ,c,m

. (32)

The latter one only depends on the float ambiguity covari-
ance matrix, that is, part of the state covariance matrix of
the Kalman filter. Once the ambiguities are fixed, the real-
valued state estimates of Eq. (23) are readjusted by linear
least-squares estimation, i.e.

x̌ creal = argmin
xcreal

∥∥zc − Hc
int x̌

c
int − Hc

realx
c
real

∥∥2
Σ−1

zc

=
(
(Hc

real)
TΣ−1

zc Hc
real

)−1
(Hc

real)
TΣ−1

zc
(
zc − Hc

int x̌
c
int

)
,

(33)

where Σzc denotes the measurement covariance matrix for
cluster c.

6 Combination of clusters

This section describes the combination of the satellite posi-
tions, clock offsets and phase bias estimates of all clusters.
We derive a multi-cluster solution to achieve the following
benefits:

– satellites being visible frommore thanone cluster provide
multiple correlated satellite position, clock and phase
bias estimates

– selection of a reference cluster cref enables expression of
satellite phase biases of any cluster in terms of satellite
phase biases of reference cluster

– satellite phase bias estimates of any cluster differ from
the satellite phase bias estimates of the reference cluster
only by a cluster-dependent bias being common to all
satellites and by differential integer ambiguities

The satellite position correction estimate of cluster c is
provided by the Kalman filter and modelled as
(
Δx̂k,c

)+ = Δxk + η
Δx̂k,c , (34)

with the true cluster-independent position correctionΔxk and
the estimation error η

Δx̂ k,c . Estimates are denoted by ,̂ and
state updates are additionally indicated by (·)+.

The estimates of the cluster-dependent satellite clock off-
sets of Eq. (14) are related to the satellite clock offsets of the
reference cluster and differential (cluster to reference cluster)
satellite clock offsets, i.e.
(
cΔδ

ˆ̃̃
τ k,c

)+
:= c

(
Δδτ k − Δδτ ref(c)

)

+
M∑

m=1

γ1m · (bkm − bref(c)m ) + η
cΔδ

ˆ̃̃
τ k,c

=
(
cΔδ

ˆ̃̃
τ k,cref

)+
−

(
cΔδ

ˆ̃̃
τ ref(c),cref

)+
(35)

The estimates of the satellite phase biases β̃
k,c
m of Eq. (17)

include satellite and/ or cluster-dependent parameters. There-
fore, we rewrite the satellite phase bias estimates as
(
λm

ˆ̃
βk,c
m

)+ = ukm + vc,m + wk
c,m + η

λm β̃
k,c
m

, (36)

with

ukm = λmβk
m −

M∑

m=1

(γ1m − q21mγ2m)bkm

vc,m = −λmβref(c),m +
M∑

m=1

(γ1m − q21mγ2m)bref(c),m

wk
c,m = −λmN

k
ref(c),m . (37)

The satellite phase bias estimates of any cluster c can be
related to the satellite phase bias estimates of the reference
cluster, i.e.

(
λm

ˆ̃
βk,c
m

)+ = ukm + vcref ,m + wk
cref ,m

+ (vc,m − vcref ,m)

+ (wk
c,m − wk

cref ,m) + η
λm β̃

k,c
m

. (38)
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The first three terms can be combined to

ũkm := ukm + vcref ,m + wk
cref ,m, (39)

which is of dimension KM . As a separate determination of

ũkm , vc,m and wk
c,m from (λm

ˆ̃
β
k,c
m )+ is not feasible due to

rank deficiency and as the integer property of wk
c,m shall

be exploited, we select a satellite k that is visible both at
cluster c and cluster cref as dual-cluster reference satellite
(being denoted by ref(c)) and map the differential ambiguity

w
ref(c)
c,m −w

ref(c)
cref ,m tovc,m . Thus, the satellite phase bias estimate

is expressed in terms of the reduced parameter set:

(
λm

ˆ̃
βk,c
m

)+ = ũkm + ṽc,m + w̃k
c,m + η

λm β̃
k,c
m

, (40)

with

ṽc,m = vc,m − vcref ,m +
(
wref(c)
c,m − wref(c)

cref ,m

)

∀ c �= cref ,m (41)

w̃k
c,m =

(
wk
c,m − wk

cref ,m

)
−

(
wref(c)
c,m − wref(c)

cref ,m

)

∀ k �= ref(c), c �= cref ,m (42)

The phase bias decomposition of Eq. (40) into a com-
mon satellite phase bias ũkm , a cluster-dependent offset ṽc,m
and integer ambiguities w̃k

c,m is the basis for the combination
of bias estimates from individual clusters. Seepersad et al.
(2016) combined the clock products from various analysis
centres with a very similar approach to enable precise posi-
tioning with integer ambiguity resolution at the end user. The
meaning, dimensions and notation of the reduced parameter
set are summarized in Table 1.

We derive the multi-cluster solution of satellite positions,
clock offsets and phase biases from the single-cluster solu-
tions of the Kalman filter. As the Kalman filter considers the
measurements of all previous epochs, it is sufficient to stack
the a posteriori state estimates of all clusters of the current
epoch in a column vector:

z =
(
((Δx̂1,1)+)T, . . . , ((Δx̂K ,1

)+)T, . . . , ((Δx̂1,C )+)T, . . . ,

((Δx̂K ,C
)+)T, (Δδ

ˆ̃̃
τ 1,1)+, . . . , (Δδ

ˆ̃̃
τ K ,1)+, . . . ,

(Δδ
ˆ̃̃
τ 1,C )+, . . . , (Δδ

ˆ̃̃
τ K ,C )+, (λm

ˆ̃
β
1,1
1 )+, . . . ,

(λm
ˆ̃
β
K ,1
1 )+, . . . , (λm

ˆ̃
β
1,1
M )+, . . . , (λm

ˆ̃
β
K ,1
M )+, . . .

(λm
ˆ̃
β
1,C
1 )+, . . . , (λm

ˆ̃
β
K ,C
1 )+, . . . ,

(λm
ˆ̃
β
1,C
M )+, . . . , (λm

ˆ̃
β
K ,C
M )+

)T
, (43)

where we assumed that the clusters are not overlapping, i.e.
there are no shared receivers among clusters. The stacked

estimates of all clusters are considered asmeasurements that
are linearly related to the satellite positions, clock offsets and
phase biases, i.e.

z = Hx + ηz, (44)

where the mapping matrix H and the state vector x can be
split into a part referring to real-valued states and a part
referring to integer-valued states:

H = (Hreal, Hint) , (45)

and

x =
(
xreal
xint

)
, (46)

where xreal and xint are defined as

xreal =
(
(Δx1)T, . . . , (ΔxK )T,

cΔδ ˜̃τ 1,cref , . . . , cΔδ ˜̃τ K ,cref ,

cΔδ ˜̃τ ref(1),cref , . . . , cΔδ ˜̃τ ref(C),cref ,

ũ11, . . . , ũ
K
1 , . . . , ũ1M , . . . , ũKM ,

ṽ1,1, . . . , ṽC,1, . . . , ṽ1,M , . . . , ṽC,M
)T

, (47)

and

xint =
(
w̃1
1,1, . . . , w̃

K
1,1, . . . w̃1

C,1, . . . , w̃
K
C,1, . . .

w̃1
1,M , . . . , w̃K

1,M , . . . w̃1
C,M , . . . , w̃K

C,M

)T
, (48)

and ηz denotes the measurement noise. We obtain the mea-
surement covariancematrix from the covariancematrix of the
posteriori state estimate of the Kalman filter, i.e. Σz = Σx̂+ .
The weighted least-squares solution of x is given by

x̂ = argmin
x

‖z − Hx‖2
Σ−1

z
= (HTΣ−1

z H)−1HTΣ−1
z z.

(49)

The number of ambiguities in x̂ is for typical values of K ,
C and M much larger than the number of satellite positions,
clock offsets and phase biases. Therefore, the ambiguity fix-
ing of the multi-cluster combination is very beneficial. The
ambiguity fixing is performed again with bootstrapping and
integer decorrelation as described inEqs. (27)–(32). The real-
valued states xreal are readjusted after ambiguity fixing as

x̌real =
(
HT
realΣ

−1
z Hreal

)−1
HT
realΣ

−1
z

(
z − Hint x̌int

)
. (50)

The obtained satellite position, clock offset and phase bias
corrections enable precise point positioning with integer
ambiguity resolution as described in the next section.

123



1208 P. Henkel et al.

Table 1 Main characteristics of the reduced parameter set for the combined solution of multiple clusterwise solutions

Notation Dimensions Lumped parameters

Satellite phase biases ũkm KM Satellite code biases

Receiver phase and code biases of ref. receiver at ref. cluster

Integer ambiguity of ref. receiver at ref. cluster

Receiver phase biases ṽc,m (C − 1)M Receiver phase bias of ref. receiver at ref. cluster

Integer ambiguities of ref. receiver at cluster and ref.cluster

Double difference integer
ambiguities between ref.
receivers at ref. cluster
and any other cluster

w̃k
c,m (C − 1)M(K − 1)

C , K and M denote the number of clusters, satellites and frequencies

7 Precise point positioning with satellite
position, clock and phase bias corrections

In this section, the application of the satellite position, clock
andphase bias corrections for precise point positioning of any
user is described. The user’s parameter mapping is assumed
to be equal to the parameter mapping of the reference net-
work.

The user u corrects its phase measurements for the known
Earth tides, satellite position estimate x̂ ku , satellite posi-
tion correction estimate Δx̂ k , satellite clock offset estimate

δτ̂ k , satellite clock offset correction estimates Δδ
ˆ̃̃
τ k,cref and

Δδ
ˆ̃̃
τ ref(c),cref , and satellite phase bias estimate ˆ̃ukm , i.e.

λm ϕ̃k
u,c,m := λmϕk

u,m − (eku)
T

(
ΔxET,u − (x̂ku + Δx̂k)

)

+ c

(
δτ̂ k + Δδ

ˆ̃̃
τ k,cref − Δδ

ˆ̃̃
τ ref(c),cref

)
− ˆ̃ukm

− λm

(
Δϕk

PW,u + Δϕk
PCO,u,m + Δϕk

PCV,u,m

)

(51)

We replace the phase measurement λmϕk
u,m by its model, use

Eq. (39) and assume that the residual orbital and clock errors
are negligible to obtain

λm ϕ̃k
u,m ≈ (eku)

Txu + cδτu

+ λmN
k
u,m − ŵk

cref ,m + λmβu,m − v̂cref ,m

+mT(Ek
u)Tz,u − q21m Ĩ

k
u,1 + εku,m . (52)

The ambiguity ŵk
cref ,m of the reference receiver of the refer-

ence cluster is mapped to the user ambiguity, i.e.

Ñ k
u,m := Nk

u,m − ŵk
cref ,m/λm

!∈ Z, (53)

i.e. the precise point positioning user only needs to estimate
this differential ambiguity. Similarly, the phase bias v̂cref ,m

of the reference receiver of the reference cluster is mapped
to the receiver phase bias, i.e.

β̃u,m := βu,m − v̂cref ,m . (54)

Thus, the user’s measurement model of Eq. (52) can be
rewritten as

λm ϕ̃k
u,m ≈ (eku)

Txu + cδτu + λm Ñ
k
u,m + λm β̃u,m

+mT(Ek
u)Tz,u − q21m Ĩ

k
u,1 + εku,m . (55)

The receiver clock offset and phase biases can be eliminated
by considering the difference between two satellites k and l:

λm ϕ̃kl
u,m ≈ (eklu )Txu + λm Ñ

kl
u,m + (mT(Ek

u) − mT(El
u))Tz,u

−q21m Ĩ
kl
u,1 + εklu,m, (56)

which corresponds to the measurement model of Kouba and
Héroux (2001) for precise point positioning with integer
ambiguity resolution.

8 Simulation results

In this section, the performance of the proposed dual stage
multi-cluster based estimation of satellite position, clock and
phase bias corrections, tropospheric zenith and ionospheric
slant delays and integer ambiguities is analysed.Galileomea-
surements on the frequencies E1 and E5a of the full Galileo
constellation (27 satellites) are simulated for the 424 stations
of the global IGS network. The IGS stations are grouped into
16 clusters as shown in Fig. 2. The measurement noise was
simulated as white Gaussian noise. In particular, a standard
deviation of 2 mm is assumed for the phase noise and of 20
cm for the pseudorange noise. Thousand epochs are simu-
lated with a sampling interval of 100 s resulting in a total
time period of 1 day, 3 hours and 2800 s.
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The process noise of the receiver and satellite clock offsets
is modelled by a standard deviation of 1 m/epoch. The satel-
lite position corrections, receiver and satellite phase biases,
tropospheric zenith delays and ionospheric slant delays are
modelled by a random-walk process with a standard devia-
tion of 1 mm/epoch.

The objective of this work is the estimation of corrections
for the broadcast satellite positions and clock offsets and of
additional satellite phase biases without using any precise
orbits and clocks. Therefore, we assume to know only the
accuracy of the broadcast satellite positions and clock offset
corrections but not their actual errors, i.e. the prior informa-
tion is modelled as

Δx̄kx,y,z = 0 m, σΔx̄kx,y,z
= 1.0 m ∀ k, c

cΔδ ˜̄τ k,c = 0 m, σcΔδ ˜̄τ k,c = 1.5 m ∀ k, c. (57)

8.1 Benefit of integer decorrelation

In this subsection, the benefit of integer decorrelation is anal-
ysed for high-dimensional ambiguity fixing within one of the
largest clusters. The success rate for sequential ambiguity
fixing/ bootstrapping is given by Teunissen (1998) as

Pc
s =

Rc∏

r=1

M∏

m=1

∫ +0.5

−0.5

1
√
2πσ 2

ˆ̃N j |1,..., j−1
r ,c,m

e

− ε2

2σ2ˆ̃N j |1,..., j−1
r ,c,m dε, (58)

where the variances σ 2
ˆ̃N j |1,..., j−1
r ,c,m

of the conditional ambiguity

estimates are obtained from the triangular decomposition of
the float ambiguity covariance matrix. The variances of the
conditional ambiguities depend on the integer decorrelation
and permutation transformation Zc of Eq. (29) due to its
permutations.

Figure 3 shows the success rate of ambiguity fixing for
the Western American cluster with 54 receivers over time.
Obviously, the success rate increases with time due to the
convergence of the Kalman filter. The speed of conver-
gence depends significantly on the number niter of pairwise
decorrelations and permutations. A success rate of 90% is
achieved only after 100 s if no integer decorrelation is used.
Today’s orbit and clock determination software packages,
e.g. the bernese GNSS software as described by Dach et al.
(2007), do not use an integer decorrelation and permutation
transformation. However, a substantial reduction in the con-
vergence time is achieved by using this transformation. The
tremendous benefit arises from the exploitation of the strong
correlations between the 1227 ambiguities. It shall be noted
that the full benefit can be achieved only if the statistics of the
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Fig. 3 Success rate of high-dimensional sequential integer ambiguity
fixing of the Western American cluster with 54 receivers: a success rate
of 90% is achieved only after 100 s if no integer decorrelation is used.
The integer decorrelation enables a drastic reduction in the fixing time
to a few seconds

float solution are accurately known. If the statistics are sig-
nificantly biased, it is preferable to use only a partial integer
decorrelation with a limited number of iterations niter.

8.2 Benefit of ambiguity fixing and of multiple
clusters

In this section, the benefit of ambiguity fixing and ofmultiple
clusters is analysed. The convergence of the satellite position
corrections of the multi-cluster combination is shown for
float ambiguities in Fig. 4 and for fixed ambiguities in Fig.
5. The float solution requires approximately 150 epochs (4
hours) to converge to a level with errors of less than 5 cm.
The errors remain for almost all satellites and epochs below
this threshold except for a few epochs, where some satellites
show a larger error due to weak observability. However, a
much faster convergence and higher stability over time can be
observed after fixing of the real-valued ambiguity estimates
to their integer values.

In particular, it can be observed that the accuracy is better
than 3 cm for almost all epochs and satellites after the ini-
tial convergence. The errors reduce to less than 5 cm within
20 epochs (33 min) and to less than 3 cm within 40 epochs
(66 min). Figure 6 shows the accuracy of the satellite phase
bias estimates referring to the reference cluster. The errors are
below 0.2 cycles (4 cm) for all satellites and epochs except of
a few epochs, where some satellites are only weakly observ-
able at the reference cluster. The fixed solution is provided in
Fig. 7 and shows a lower noise level and higher stability than
the float solution. One can also observe a high correlation
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Fig. 4 Errors of multi-cluster satellite position correction estimates
with float ambiguities. Each colour represents a different satellite
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Fig. 5 Errors of multi-cluster satellite position correction estimates
with fixed ambiguities. Each colour represents a different satellite

between the errors of the satellite phase bias estimates from
different satellites.

Figure 8 shows the benefit in precision of themulti-cluster
over the single-cluster solution of satellite position correc-
tions, satellite clock offsets and satellite phase biases. The
ambiguities were estimated as float values. The subfigures
on the left side refer to the single cluster, and those on the
right side refer to the multi-cluster solution. Each plotted line
refers to a satellite pass.

It can be clearly seen that the single-cluster solution has a
poor precision for the parameters related to satellites rising
at the edge of the cluster. On the contrary, the multi-cluster
solution provides satellite position corrections, satellite clock
offsets and phase biases with a precision varying between 8
and 50 mm for all satellites and epochs after initial conver-
gence. In addition, a faster convergence and a lower error
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Fig. 6 Errors of multi-cluster satellite phase bias estimates on E1 and
E5a (referring to the reference cluster) with float ambiguities. Each
colour represents a different satellite
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Fig. 7 Errors of multi-cluster satellite phase bias estimates on E1 and
E5a (referring to the reference cluster) with fixed ambiguities. Each
colour represents a different satellite

floor can be observed especially for the satellite position and
clock errors of the multi-cluster combined solution.

The ambiguity-fixed solution is shown for the same sce-
nario and parameters in Fig. 9. The convergence time is
significantly shorter for both the single- and multi-cluster
solutions. A higher precision is also achieved for the multi-
cluster solution of satellite position corrections, satellite
clock offsets and phase biases with a standard deviation
between 5 and 20 mm for all satellites.

9 Real data analysis

In this section, we validate the proposed estimation of satel-
lite position, clock and phase bias corrections, tropospheric
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Fig. 8 Benefit in precision of multi-cluster estimation of satellite posi-
tion corrections, satellite clock offsets and phase biases with float
ambiguities. Each colour represents a different satellite. a Single-cluster
satellite position corrections. b Multi-cluster satellite position correc-

tions. c Single-cluster satellite clock offsets. d Multi-cluster satellite
clock offsets. e Single-cluster satellite phase biases. f Multi-cluster
satellite phase biases

zenith and ionospheric slant delays and integer ambiguities
with real L1/L2 dual-frequency (M = 2) GPSmeasurements
with a sampling rate of 30 s. The day of year (DOY) 150 in
the year 2017 was selected due to the high availability of data
and average ionospheric conditions.

In case of active ionospheric conditions, the measurement
and process noise statistics would need to be adjusted since

the phase noise is increased during ionospheric scintilla-
tions and the temporal variability of the ionospheric delay
is larger. We used 77 Multi-GNSS Experiment (MGEX) sta-
tions described in Montenbruck et al. (2016) and defined
11 clusters as shown in Fig. 10. Obviously, the number of
receivers per cluster is lower than in the simulations since
the data of some stations were not used due to outliers. The
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Fig. 9 Benefit in precision of multi-cluster estimation of satellite posi-
tion corrections, satellite clock offsets and phase biases with fixed
ambiguities. Each colour represents a different satellite. a Single-cluster
satellite position corrections. b Multi-cluster satellite position correc-

tions. c Single-cluster satellite clock offsets. d Multi-cluster satellite
clock offsets. e Single-cluster satellite phase biases. f Multi-cluster
satellite phase biases

number of receivers per cluster is provided in the upper left
corner of each cluster.

The reference cluster and the reference receiver of each
cluster are additionally highlighted. The ambiguities were
treated as float numbers as the number of receivers per cluster
was too small for reliable ambiguity fixing. Nevertheless,

the time constancy of ambiguities was taken into account by
setting the process noise of ambiguities to zero.

A pre-processing was performed to eliminate outliers,
to correct for cycle slips and to estimate the measurement
noise statistics. The process noise statistics were modelled
according to Table 2, whereas we have used similar values
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Fig. 10 IGS Multi-GNSS network with 11 clusters: the number of
receivers per cluster is provided in the upper left corner of each cluster.
The reference receiver of each cluster and the reference cluster are
additionally highlighted

Table 2 Process noise statistics and accuracy of prior information

State parameters σx σx̄

Satellite position corrections 0.02 m 1.0 m

Receiver clock offsets 1 km –

Satellite clock offset corrections 1 m 1.5 m

Tropospheric zenith delays 0.002 m –

Ionospheric slant delays 0.02 m –

Receiver phase biases 0.001 m –

Satellite phase biases 0.001 m –

Integer ambiguities 0 –
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Fig. 11 Satellite position corrections for broadcast orbit of PRN 1 on
DOY 150 in 2017
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Fig. 12 Deviation between estimated satellite position and IGS orbit
based satellite position for PRN 1 on DOY 150 in 2017
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Fig. 13 Satellite position corrections for broadcast orbit of PRN 2 on
DOY 150 in 2017

to Laurichesse et al. (2010) and Hauschild and Montenbruck
(2009).

Figure 11 shows the obtained satellite position correction
estimates for the broadcast orbit of PRN 1. The corrections
show a jump every 2 hours due to the updates of the broadcast
orbits and a smooth trajectory in between the updates. The
accuracy of the estimated satellite corrections and, thereby,
of the satellite positions can be obtained by a comparison
with the IGS orbits. Figure 12 shows the deviation between
our estimated satellite position and the IGS orbits. We can
observe that that the error converges from decimetre level to
a few centimetres within every 2-h cycle.

A similar picture is obtained for the other satellites, e.g.
the satellite position corrections of PRN 2 and their accuracy
are provided in Figs. 13 and 14.
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Fig. 14 Deviation between estimated satellite position and IGS orbit
based satellite position for PRN 2 on DOY 150 in 2017
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Fig. 15 Satellite phase bias estimates (includingmapped phase bias and
ambiguity of cluster’s reference receiver) on L1 with float ambiguities
on DOY 150/2017, derived from theWestern European cluster solution.
Each colour represents a different satellite

The estimated satellite clock offsets cannot be compared
directly with IGS due to the different parameter mapping
given by Eqs. (14) and (35). However, the S-transformation
of Baarda (1973) could be used to compare the satellite clock
offsets on a between-satellite single-differenced form. The
further analysis focuses on the satellite phase bias correc-
tions.

Figure 15 shows the estimates of the L1 satellite phase
biases of Eq. (17) of the single-cluster solution of theWestern
European cluster for float ambiguities. It has to be noted that
the absolute value of the satellite phase biases is irrelevant,
as the phase bias and ambiguity of the reference receiver are
mapped to the absolute satellite phase biases. The stability of
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Fig. 16 Standard deviation of satellite phase bias estimates on L1 with
float ambiguities onDOY150/2017, derived from theWesternEuropean
cluster solution. Each colour represents a different satellite
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Fig. 17 Phase measurement residuals on DOY 150/2017, derived from
the Western European cluster solution. Each colour represents a differ-
ent measurement

the bias corrections ismore relevant as fast fluctuationswould
require frequent bias updates for the precise point positioning
user of the corrections. However, we can observe a stable
behaviour for the phase bias estimates of almost all satellites
after initial convergence. The convergence time ranges from
a few to several hours. Therefore, the phase bias estimates
referring to satellites being observed only for a short amount
of time do not converge sufficiently.

Figure 16 illustrates the achieved precision of the L1 satel-
lite phase bias estimates in terms of the formal standard
deviation as provided by the Kalman filter in the state update.
The convergence time for satellite phase bias estimates of
newly tracked satellites is in the order of 3 hours. A precision
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Fig. 18 Satellite phase bias estimates on L1 (including mapped phase bias and ambiguity of cluster’s reference receiver) along with their standard
deviations for four representative GPS satellites on DOY 150/2017, derived from the Western European cluster solution. a PRN11. b PRN18. c
PRN25. d PRN30

between 0.05 and 0.20 cycles, or 1 and 4 cm, respectively, is
achieved after initial convergence.

Figure 17 shows the phase measurement residuals for
DOY 150/2017, derived again from the Western European
single- cluster solution. The residuals are an indicator for the
quality of the measurement model and the used observations,
since the former include the measurement noise, multipath
and other unmodelled effects. The phase residuals do not
exceed the level of 3 cm and remain even below 1 cm for
99.7% of the time, which confirms the high quality of the
selected data.

Figure 18 presents a more precise picture of the satel-
lite phase bias estimates by depicting the L1 satellite phase
biases of four representative GPS satellites, plus their formal
standard deviations. It can be clearly seen that the satellite
phase biases show a high stability with variations between 2
and 5 cm per hour during a satellite’s pass after convergence.

An hour or even less is sufficient for the bias estimates to
converge to an almost constant value. It has to be noted that
the absolute value of the satellite phase biases is irrelevant,
as the phase bias and ambiguity of the reference receiver are
mapped to the absolute satellite phase biases. The formal
precision of the satellite phase biases on L1 reaches the 0.10
cycles (∼ 2 cm) level after 2 hours, while the stable level of
0.05 cycles (∼ 1 cm) is achieved after about 5 hours.

Figure 19 shows thewidelane (L1–L2) satellite phase bias
estimates obtained by differencing the satellite phase bias
estimates on frequencies L1 andL2. The errors of the satellite
phase bias estimates on frequencies L1 and L2 are highly
correlated and mostly drop by differencing. Therefore, the
widelane phase bias estimates show an even higher stability
over time than the uncombined satellite phase bias estimates
on L1 and L2.
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Fig. 19 Widelane satellite phase bias estimates (including mapped
phase bias and ambiguity of cluster’s reference receiver) with float
ambiguities on DOY 150/2017, derived from the Western European
cluster solution. Each colour represents a different satellite

10 Conclusion

In this paper, we presented a method for the estimation
of satellite position, clock and phase bias corrections, tro-
pospheric zenith and ionospheric slant delays, and integer
ambiguities with a global network of reference stations.
Undifferenced and uncombined measurements of an arbi-
trary number of frequencies can be processed such that the
obtained corrections can be used for precise point positioning
with any type of differenced or combinedmeasurements. The
method uses a parameter mapping that leads to a full-rank
system and maintains the integer property of ambiguities for
a maximum number of ambiguities. We derive this mapping
from a global perspective.

The method splits the global network into multiple clus-
ters and selects a reference receiver and reference satellite
within each cluster as well as one reference cluster among all
clusters. The clustering enables a common satellite visibility
within each cluster and, thus, the exploitation of the inte-
ger property of double- difference ambiguities. We set up a
Kalmanfilter for each cluster to estimate the satellite position,
clock and phase bias corrections, atmospheric delays and
ambiguities. An integer decorrelation and sequential adjust-
ment are used to fix the double- difference ambiguities within
each cluster and to adjust all other state parameters, respec-
tively. Subsequently, the satellite position, clock and phase
bias corrections of each cluster are combined into a global
multi-cluster solution by least-squares estimation. Finally,
an integer decorrelation and sequential adjustment are used
again to fix the double difference ambiguities related to ref-
erence stations of different clusters and to readjust the other
state parameters.

The proposed method is validated with both simulated
Galileo measurements and real GPS measurements from the
global IGS network. The ambiguities were fixed to inte-
gers for simulated measurements and kept float-valued for
real measurements due to the sparsity of the used reference
stations. We obtain satellite position, clock and phase bias
corrections with an accuracy of better than 2 cm for the sim-
ulated Galileo measurements and a precision of 2 cm for the
real GPS measurements.
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