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ABSTRACT

Real-Time Kinematic (RTK) positioning is attractive for
numerous applications including autonomous driving of
vehicles. However, multipath remains a challenge for RTK
positioning especially in urban environments. Choke-ring
antennas which suppress code multipath cannot be used
due to restrictions on the size, weight and costs. The used
low-cost patch antennas cannot suppress the multipath,
which can be of several tens of meters.

Therefore, we will include a code multipath parameter
for each satellite in our RTK positioning to prevent a map-

ping of the multipath into other state parameters and to
exploit the temporal correlation of the multipath. We al-
so enhance the ambiguity fixing by introducing two fixing
phases: Acandidate determination phaseand acandida-
te tracking phase. In the first phase, we determine sets of
integer candidate vectors using LAMBDAs integer decor-
relation and tree search [1]. As the float solution and/ or its
statistics might be biased, we determine integer candidate
vectors atmultipleepochs with different float solutions and
mergethese integer candidate vectors. Thereby, we increa-
se the likelihood of including the correct candidate vector
in the set of candidate vectors. In the second phase, a con-
ditional least-squares phase-only baseline estimate is deter-
mined for each candidate vector at every epoch. The sum
of squared measurement residuals isaccumulatedover ti-
me for every candidate vector. This second phase has two
important advantages over an instantaneous decision: First,
the accumulation of the residuals improves the discrimina-
tion between candidates. Secondly, the used single epoch
least-squares phase-only solutions are not affected by the
float solution. This is helpful since any temporal correla-
tion in the phase measurements (e.g. due to phase multi-
path) could lead to erroneous statistics of the float solution.
We fix the RTK and attitude ambiguities sequentially: First,
the attitude ambiguities are fixed in a tree search using soft
a priori information on the baseline length. Subsequently,
the RTK ambiguities are fixed in another tree search using
both the measurements of the RTK baseline and the fixed
measurements of the attitude baseline. We select the final
candidate based on the accumulated sum of squared phase
residuals and the baseline stability.

The fixed attitude enables a precise estimation of the ac-
celerometer and angular rate biases. A precise RTK positi-
on and attitude is then be obtained by tracking the fixed so-
lution with GPS/ INS tight coupling. We show the RTK per-
formance for both static and kinematic measurements: We
obtained a millimeter-level positioning accuracy for static
conditions and a centimeter-level positioning accuracy for
kinematic conditions with multipath errors of up to 50 m.



INTRODUCTION

The estimation of a code multipath parameter for each
satellite has several advantages. The following list includes
the most important benefits of multipath estimation.

Benefits of code multipath estimation for RTK:

• Separation of multipath errors from baseline and am-
biguity estimates, i.e. unbiased estimation of float am-
biguities, baseline and multipath

• Reduction of variance of code measurement noise to
variance of pure noise

• Exploitation of temporal correlation of multipath

• Faster convergence of float ambiguities

• Increase of probability of including correct integer
ambiguities in integer search space

• Increase of probability of selecting correct integer am-
biguities

Further consequences of code multipath estimation:

• measurements frommultiple epochs are needed to
estimate baseline, ambiguities and a multipath para-
meter for each satellite

• separation of baseline from ambiguities and multipath
is enabled only through temporal changes of satellite-
receiver line of sight vectors~e k

r

1 MEASUREMENT SET-UP

In this paper, we consider the measurement set-up of Fig.
1 [2]. Two single-frequency GPS patch antennas are moun-
ted on top of a vehicle and connected to two u-blox LEA 6T
GPS receivers to get the two-dimensional attitude (heading,
pitch) of the vehicle. A virtual reference station (VRS, see
Landau et al. [3]) serves as a third receiver for RTK posi-
tioning. An additional low-cost inertial sensor (MPU 9150
from Invensense) provides 3D acceleration and angular ra-
te measurements. The inertial sensor allows a reliable cycle
slip correction and position/ attitude determination during
short GNSS signal interruptions.

We consider the measurements of all three receivers and
the inertial sensorjointly in a Kalman filter [4]. The indi-
vidual sensors have different data rates, i.e. 1 Hz for the
VRS, 5 Hz for the GPS receivers and 100 Hz for the in-
ertial sensor. The position and attitude estimate is updated
whenever there is a GPS or inertial measurement available.
This yields an update rate of105 Hz for the position and
attitude.

Fig. 1: Measurement set-up: Two GPS antennas on the ve-
hicle are used for attitude determination. The (virtual) refe-
rence station allows an RTK positioning. The inertial mea-
surement unit (IMU) is used for cycle slip correction and
position/ attitude determination during short GPS signal in-
terruptions.

RTK POSITIONING
WITH MULTIPATH ESTIMATION

Our RTK positioning includes the following processing
steps:

• float attitude solution: estimation of attitude baseline,
ambiguities andDD code multipathswith a Kalman
filter using DD pseudorange and carrier phase measu-
rements

• float RTK solution: estimation of RTK baseline, am-
biguities andDD code multipathswith a Kalman fil-
ter using DD pseudorange and carrier phase measure-
ments

• fixing of attitude DD ambiguities

• conditional fixing of RTK DD ambiguities using DD
pseudorange and carrier phase measurements from
both attitude and RTK baselines andfixed attitude am-
biguities

• calibration of accelerometer and gyroscope, i.e. esti-
mation of sensor biases using GPS-based attitude

• estimation of position and attitude with GPS/ INS
tight coupling and fixed attitude and RTK ambiguities

In the tight coupling, we use satellite-satellite single dif-
ference (SD) measurements instead of double difference
(DD) measurements. The use of SD instead of DD mea-
surements has one major advantage: As the data rate of the
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kl

fc(~e
k
1 ~v

k − ~e l
1~v

l)/c+ fcδṫ
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(1)

VRS is much lower than the data rate of the GPS receivers,
DD measurements can only be computed at the low rate of
the VRS while SD measurements can be determined with
the individual, partially higher data rates.

We correct the SD measurements for the known position
of the VRS, the known satellite positions and clock off-
sets, the tropospheric delays, the synchronization correcti-
ons, the fixed DD ambiguities and cycle slips. This leaves
the RTK and attitude baselines, the SD ambiguitiesNkl

3 of
the VRS, the SD slant ionospheric delaysIkl, the SD sa-
tellite phase biasesβkl, the SD code multipath parameters
∆ρklMPr

of each receiverr ∈ {1, 2, 3} and the SD satellite
code biasesbkl as unknowns. We additionally consider the
SD Doppler measurements of the two GPS receivers, which
provide an information on the receiver velocity (i.e. rate of
the RTK baseline) and the rate of attitude baseline. Thus,
we obtain the model of Eq. (1) for the GPS measurements
as decribed by Sperl in [5].

As the SD ambiguities of the VRS, the slant ionospheric
delays and the SD satellite phase biases can not be separa-
ted for single-frequency GPS receivers, we will treat them
together as a lumped real-valued term. Similarly, we will
map the slant ionospheric delays and satellite code biases
to the SD multipath parameter.

The MEMS-based inertial sensors are providing the
measurements in a local body-fixed frame (denoted by the
upper index b). We relate the acceleration in the b-frame to
the acceleration in the Earth-Centered Earth Fixed (ECEF)
frame according to Jekeli [6] and Henkel [7] as

ab(tn) =R
b
n(tn)R

n
e (tn)a

e(tn) + bba(tn) (2)

+ g





sin(θ(tn))
cos(θ(tn)) sin(φ(tn))
cos(θ(tn)) cos(φ(tn))



+ εba(tn),

with the rotation matricesRn
e andRb

n, the accelerationae

in the e-frame being equal to~̈b13, the acceleration biasesbba
of the sensor in the b-frame, the gravitational acceleration
g, the pitch angleθ, the roll angleφ and the measurement
noiseεba. The rotation from the e-frame into the n-frame
depends on the latitudeϕ1 and longitudeλ1 of receiver1
and is given by

Rn
e (tn) = R1(π/2− ϕ1(tn))R3(π/2 + λ1(tn)). (3)

The rotation from the n-frame into the b-frame depends on
the headingψ and pitchθ of the vehicle and is given by

Rb
n(tn) = R2(−θ(tn))R3(π/2− ψ(tn)). (4)

The gyroscope senses the angular ratesωb
ib of the body-

fixed (b-) frame w.r.t. the inertial (i-) frame in the b-frame.
The angular rate measurements can be expressed as the sum
of ωb

in, ωb
nb, a biasbbωib

and a noiseηbωib
, i.e.

ωb
ib(tn) = Rb

n(tn)ω
n
in(tn)+ωb

nb(tn)+ bbωib
(tn)+ ηbωib

(tn)
(5)

The angular ratesωb
nb are related to the rates of the Euler

angles according to Jekeli [6] as
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withRi(α) being a rotation around thei-th axis by an angle
α. The rotationωn

in of the navigation frame w.r.t. the iner-
tial frame depends on the latitudeϕ1, the rates{ϕ̇1, λ̇1} of



latitude and longitude, and the Earth rotation rateωe, and
is given by Jekeli [6] as

ωn
in =





(λ̇1 + ωe) cos(ϕ1)
−ϕ̇1

−(λ̇1 + ωe) sin(ϕ1),



 . (7)

In the tight coupling, we estimate the following state pa-
rameters (see also [8]):

x = (~b T
13,
~̇b T
13,
~̈b T
13, ψ, θ, φ, ψ̇, θ̇, φ̇, (λN3 − I + λβ)T, . . .

(∆ρMP1 + I + b)T, (∆ρMP2 + I + b)T,

(∆ρMP3
+ I + b)T, bba, b

b
ωib

)T (8)

Note that this state vector differs from the classical tight
coupling by the additional SD ambiguities of the VRS and
the SD code multipath parameters of each receiver.

MODELING OF CODE MULTIPATH

We model the pseudorange multipath at epochn as a
scaled Random-walk process, i.e.

∆ρkMPr,n
= αn∆ρ

k
MPr,n−1

+ (1− αn)η∆ρk
MPr,n

(9)

where the scaling factorαn ∈ [0, 1] was introduced for the
following reason:

• modeling of both static multipath (αn equal to1 re-
sults in deterministic multipath) and kinematic multi-
path (αn equal to0 corresponds to white noise)

• variance of multipath is bounded forn→ ∞
if αn < 1

Consequently, the parameterαn should be a function of
the speed of the object, i.e. the value should be reduced for
increasing speed.

The code multipath at epochn can be further developed
with Eq. (9) as:

∆ρkMPr,n
=

(

n
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αi
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+
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We model the change of the multipath over time aswhite
Gaussian noise, i.e.

η∆ρk
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∼ N

(

0, σ2
∆ρk

MPr,n

)

. (11)

Thus, the variance of the code multipath follows as

σ2
∆ρk
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The variances can be further simplified in case of a con-
stantαn and constantσ2

η
∆ρk

MPr,n−i

. We use a finite geome-

tric series expansion to simplify Eq. (12) to

σ2
∆ρk

MPr,n

= α2nσ2
∆ρk

MPr,0

+ (1− α)2
1− α2n

1− α2
σ2
∆ρk

MPr,n

.

For largen, the variances converge to the finite value

lim
n→∞

σ2
∆ρk

MPr,n

=
(1− α)2

1− α2
σ2
∆ρk

MPr

. (13)

ENHANCED RTK POSITIONING

In this section, we describe our enhancements to the clas-
sical RTK positioning.

• Float solution:

In the state of the art RTK positioning [3], the 3D
baseline and DD ambiguities are estimated from DD
phase and code measurements. The code multipath is
not considered as a parameter to be estimated. It is
implicitly assumed that it can be mapped to the code
noise, and the respective variance is increased accor-
dingly.

Unfortunately, this assumption is not valid as the co-
de multipath is having a substantial deterministic part
(especially for static situations), which can not be re-
duced by averaging over multiple epochs and results
in a significant temporal correlation. If the code mul-
tipath exceeds the assumed code noise variance, a cer-
tain part of the multipath is also mapped to the ambi-
guities and baseline estimates, which results in a hea-
vily biased float solution.

However, the temporal correlation of multipath could
be fully exploited in a state space model. We include a
multipath parameter for each DD in the float solution
to obtain the following advantages:

– prevent mapping of multipath errors to ambigui-
ties and baseline

– exploit temporal correlation of multipath

– better use of code measurements by setting code
noise variance to variance of pure noise



• Triggering of fixing:

The well-known LAMBDA method of Teunissen [1]
uses the float ambiguity covariance matrix for ambi-
guity fixing. The covariance matrix of the float am-
biguity solution might be erroneous for the following
reasons:

– covariance matrix of DD phase and code measu-
rements isnot accurately known, i.e. thecorre-
lation between the DD measurements is not pro-
perly modeled or estimated

– the phase multipath and its temporal correlation
are not taken into account

– receiver tracking errors are not accurately consi-
dered in the measurement model

As these errors often lead to an underestimation of the
actual uncertainty, we use the stability of the float so-
lution as additional criterion to trigger the fixing. The
stability is determined from the maximum variation

of the float baseline estimate~̂b (i)
12 , whereas the ma-

ximization is taken over the lastjs = {0, . . . , jmax}
epochs and over the three coordinatesi ∈ {1, 2, 3},
i.e.

max
i∈{1,2,3}

(

max
j∈js

~̂b
(i)
12 (tn−j)−min

j∈js

~̂b
(i)
12 (tn−j)

)

.

(14)
A stable float solution reduces the likelihood of large
errors in the float solution, which is a major advantage
over any covariance-only based triggering.

• Candidate search:

The LAMBDA method [1] determines integer candi-
dates in a sequential tree search. In the state of the art
approach of [1], the candidates are determined at a cer-
tain epoch using the respective float solution, which
has some-how converged. The fixing is then perfor-
med based on these candidates and fully relies on the
eventually erroneous float ambiguity covariance ma-
trix.

As the covariance matrix might be erroneous, we de-
termine sets of integer candidates atmultiple epochs
using different float solutionsto increase the like-
lihood of including the correct candidate in the set of
all candidates.

The sets of candidate vectors are merged, i.e. redun-
dant candidates are eliminated and all previous can-
didates are transformed in case of changing reference
satellites. The obtained set of merged candidates are
stacked in the pool

Npool = {N
(1)
12 , . . . , N

(c)
12 }. (15)

Note that the lengths of the candidate vectors might
vary according to the number of tracked satellites at
the selected epoch of the float solution. The conside-
ration of the float solution at multiple epochs is of es-
sential importance as the subsequent candidate selec-
tion can only be successful if the correct candidate is
included in the set. The probability of correct fixing is
written as

Pcf = Pcandidate in set · Pcorrect candidate selected.
(16)

• Candidate tracking:

The LAMBDA method [1] performs a fixing decision
using the float solution at a certain epoch. The fixing
is trusted if the ratio between the second-lowest and
lowest sum of squared ambiguity residuals exceeds
a certain value. We have analyzed numerous datasets
and have observed that an erroneous candidate is often
selected as both the ambiguity residuals and measure-
ment residuals are not trustworthy. There is a strong
need for enhancing the fixing decision. One option is
to track the candidate vectors over time and to deter-
mine a phase-only least-squares baseline estimate at
every epoch for every candidate, and to accumulate
the sum of squared residuals over time, i.e.

∑

j∈js

‖r(m)
ϕ12

(tj)‖
2 ∀m, (17)

with

r(m)
ϕ12

(tj) = λ
(

ϕ12(tj)− Ň
(m)
12

)

−H(tj)~̌b
(m)
12 (tj)

= P⊥
H (tj)λ

(

ϕ12(tj)− Ň
(m)
12

)

, (18)

with P⊥
H being the projector on the orthogonal com-

plement of the space ofH . The analysis of numerous
datasets has shown a certain improvement but a relia-
ble fixing can still not be guaranteed. Therefore, we
additionally analyze the error of the least-squares ba-
seline estimate for them-th candidate at epochtj :

∆~̌b
(m)
12 (tj) = S(tj)λ(∆ϕMP12(tj)−∆Ň

(m)
12 ), (19)

with

S(tj) =
(

HT(tj)Σ
−1(tj)H(tj)

)−1
HT(tj)Σ

−1(tj),
(20)

and∆Ň (m)
12 being the error of them-th integer candi-

date. The fixed phase residuals are shifted by

∆r(m)
ϕ12

(tj) = P⊥
H (tj)λ(∆ϕMP12

(tj)−∆Ň
(m)
12 ).

(21)



As theH matrix is continuously changing over ti-
me due to the satellite movement, erroneous candida-
tes can be detected from the baseline drift or residual
drift. The baseline drift is obtained from Eq. (19) as

~̌b
(m)
12 (tj)− ~̌b

(m)
12 (t1)

= S(tj)
(

λ(∆ϕMP12(tj)−∆Ň
(m)
12 ) + ε12(tj)

)

− S(t1)
(

λ(∆ϕMP12
(t1)−∆Ň

(m)
12 ) + ε12(t1)

)

= S(tj)λ∆ϕMP12
(tj)− S(t1)λ∆ϕMP12

(t1)

+ (S(tj)− S(t1))∆Ň
(m)
12

+ S(tj)ε12(tj)− S(t1)ε12(t1). (22)

Unfortunately, the drift due to the change ofH is
rather small and compensated to some extent by the
change of the weightingΣ−1 and by the change of
the phase multipath over time. However, the drift due
to an erroneous integer candidate continuously grows
over time. Therefore, the drift is estimated from the
baseline estimates of numerous epochs, which are mo-
deled as a linear function of time, i.e.
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, (23)

with α(m)
0 andα(m)

1 being the linear coefficients and

η
(m)
12 (tj) including the difference of the projected pha-

se noise and multipath, and

Λ =











1 t1 − t1
1 t2 − t1
...

...
1 tj − t1











. (24)

The coefficients are obtained by a standard least-
squares estimation:

(

α̂
(m)
0

α̂
(m)
1

)

=
(

ΛTΛ
)−1

ΛT
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





.

(25)
The coefficientα(m)

1 describes the slope/ drift of the
baseline due to the erroneous candidate and to some
extent due to phase multipath and noise.

• Candidate selection:

The LAMBDA method [1] selects the candidate solely
based on the sum of squared ambiguity residuals. This
makes the fixing very sensitive to any error in the float
solution.

We perform a pre-selection of integer candidates ba-
sed on the accumulated sum of fixed phase measure-
ment residuals of Eq. (17), i.e. by selecting only the
candidates where the accumulated sum of residuals is
below a predefined thresholdγ. The candidate with
the maximum baseline stability is then chosen among
all preselected candidates, i.e.

Ň
(m)
12 = argmin

m
|α̂

(m)
1 | s. t

∑

j∈js

‖r(m)
ϕ12

(tj)‖
2 !
< γ.

(26)
The joint consideration of the residuals and the base-
line stability results in a much more reliable fixing.

An erroneous candidate might still be selected if the
integer term in Eq. (22) compensates for the multi-
path and noise terms, i.e. an erroneous candidate has
a lower drift than the correct candidate.

The change of the phase multipath over time is in ge-
neral not as continuous as the change of theH matrix
over time. Thus, the presence of phase multipath could
be detected by analyzing the residuals of the drift esti-
mation, i.e.

r
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0 ,α̂

(m)
1
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(m)
12 (t1)− ~̌b

(m)
12 (t1)
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









, (27)

with P⊥
Λ being the projector on the orthogonal com-

plement of the space ofΛ. As the least-squares ba-

seline estimates~̌b(m)
12 (tj) are dependent onΣ(tj) and

any variation ofΣ(tj) might lead to a variation of
~̌b

(m)
12 (tj), it is recommended to use of constantΣ du-

ring the candidate tracking and selection phases.

MEASUREMENT RESULTS

This section includes the verification of our RTK positio-
ning with multipath estimation using real measurements.

We first considerstaticmeasurements with an RTK ba-
seline length of104 m. Fig. 2 shows the code multipath
for each double difference over time. One can observe that
the change of the code multipath between two successive
epochs is for most epochs much lower than the absolute va-
lue of the code multipath. This high temporal correlation of
the multipath is typical for static environments and is fully
exploited in the Kalman filter. The enlarged sections show
that the estimated code multipath closely follows the true



multipath + noise (obtained by subtracting the correct ba-
seline from the DD pseudoranges). The deviation between
the estimated multipath and the true multipath + noise is
only in the order of magnitude of the code noise.
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Fig. 2: Estimation of DD code multipath: The true and esti-
mated multipath are shown for all visible satellites. The en-
larged sections for PRN 04 and 14 show that the estima-
ted code multipath estimates closely follow the track of the
true ones. The error of the multipath estimates are only in
the order of magnitude of the code noise.

Fig. 3 shows the accuracy of the float baseline estima-
te. We can observe that the baseline error reduces to less
than0.5 m within a few seconds, and then varies by only a
few decimeters. The sudden increases in uncertainty every
∼ 200 s are caused by restarts of the Kalman filter after
each ambiguity fixing. If the code multipath is not estima-
ted, the covariance matrix of the code noise has to be incre-
ased dramatically to absorb the code multipath in the code
noise. The enlarged code noise covariance matrix would re-
sult in much longer convergence times. The small error of
the float solution shows that the estimation of the code mul-
tipath prevents a mapping of the code multipath into other
state parameters. Consequently, the estimation of the code
multipath is very beneficial.

Fig. 4 shows the DD phase residuals for the fixed soluti-
on over time. The residuals of all DD are less than2 cm and
almost drift-free, which indicates a consistent measurement
model and a correct integer ambiguity fixing and cycle slip
correction. The slight long-term variations are caused by
phase multipath, by a changing satellite geometry and/ or
by a change of the weighting of the measurements.

Fig. 5 shows the error of the least-squares estimate of
the baseline coordinates using only the carrier phase mea-
surements after ambiguity fixing. A millimetre-level posi-
tioning accuracy is achievable with low-cost GPS receivers
and patch antennas despite severe code multipath. The in-
terpretation is very similar to the previous figure, i.e. the
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Fig. 3: Accuracy of Kalman filter based float solution with
baseline, ambiguity and code multipath estimation: The ba-
seline errors reduce to less than 0.5 m after convergence of
the Kalman filter. This error is in the order of the code noise
and much lower than the code multipath. The sudden incre-
ases in uncertainty every∼ 200 s arise from restarts of the
filter after integer ambiguity fixing.
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Fig. 4: Residuals of fixed DD carrier phase measurements:
The residuals are less than 2 cm, which indicates a cor-
rect ambiguity fixing and correct cycle slip correction. The
slight long-term variations are caused by phase multipath,
by a changing satellite geometry and/ or by a change of the
adaptive weighting of the measurements.

small order of magnitude of only1 cm indicates a consi-
stent measurement model and a correct ambiguity fixing.
The slight long-term variations are due to phase multipath,
by a changing satellite geometry and/ or by a change of the
weighting of the measurements.

Fig. 6 shows the fixed phase residuals over a period of
∼ 30 minutes. The low order of magnitude and the lack of
a drift indicate a correct integer ambiguity fixing.
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Fig. 5: Error of least-squares ambiguity fixed baseline esti-
mate: A millimetre-level positioning accuracy is achieved
with low-cost GPS receivers despite severecodemultipath
of up to 50 m. The slight temporal variations are caused by
phasemultipath, by a changing satellite geometry and/ or
by a change of the weighting of the measurements.

The time-correlated variations are caused by phase mul-
tipath and can be reduced by avaraging the residuals over
longer periods.

0 2000 4000 6000 8000 10000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [epochs]

R
es

id
ua

ls
 o

f f
ix

ed
 p

ha
se

 s
ol

ut
io

n 
[m

]

 

 

Fig. 6: Long-term variation of fixed phase measurement re-
siduals: the time-correlated variations are caused by pha-
se multipath. The lack of a drift indicates a correct integer
ambiguity fixing. The averaging of the residuals over lon-
ger periods improves the discrimination between different
integer candidates.

Fig. 7 shows the performance of our RTK positioning
with GPS/ INS tight coupling in an urban environment:
The estimated ambiguity-fixed trajectory closely follows
the geodetic reference (Applanix). The deviation between
both trajectories is only9.4 cm and, thus, below the image

resolution of Google Earth.

Fig. 7: Performance of RTK positioning with GPS/
INS tight coupling in urban environment: The estimated
ambiguity-fixed trajectory closely follows the geodetic re-
ference (Applanix). The deviation between both trajecto-
ries is only9.4 cm and, thus, below the image resolution of
Google Earth.

CONCLUSION

Multipath is the challenge for RTK positioning with low-
cost GPS receivers and antennas. In this paper, we exploi-
ted the temporal correlation of the code multipath to enhan-
ce the RTK performance. We estimate a code multipath pa-
rameter for each double difference in the float solution. The
multipath is modeled as a scaled Gauss-Markov process to
cover both static and kinematic multipath. The ambigui-
ty fixing includes two phases: an integer collection phase
and an integer tracking phase. In the collection phase, we
determine candidate vectors at multiple epochs to increase
the likelihood of including the correct candidate vector in
the set of candidate vectors. In the tracking phase, we deter-
mine a single epoch phase-only least-squares fixed baseline
estimate for each candidate at each epoch. The residuals are
accumulated over time and the candidate vector is selected
based on the minimum baseline drift to enhance the relia-
bility of the candidate selection. We applied the proposed
method to real measurements of two low-cost GPS recei-
vers and patch antennas, and obtained a millimetre-level
positioning accuracy despite code multipath of up to 50 m.
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