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ABSTRACT

Carrier phase measurements are extremely accurate but
ambiguous. The reliability of the resolution of this ambi-
guity is often not sufficient due to the the small carrier wa-
velength of19 cm and multipath. There are two options for
improving the reliability of integer least-squares estimati-
on: (1) multi-frequency widelane combinations that increa-
se the wavelength to several meters, and (2) constraints on
the length and orientation of the baseline which reduce the
size of the search space. This paper focuses on the second
aspect, and provides a soft constrained integer least-squares
estimator, i.e. a method that uses a priori information on
the length and orientation of the baseline to improve the
ambiguity resolution and also ensures a sufficient robust-
ness with respect to uncertainties in the a priori informati-
on. This opens up new opportunities for applications such
as freight stabilization on cranes and helicopters or attitu-
de determination of aircrafts. In all these applications, the
length and orientation are constrained but not fixed.

This paper suggests two approaches for soft constrai-
ned integer least-squares estimation: The first one includes
a priori information on the length of the baseline and its
orientation (attitude) in the form of Gaussian distributions.



The second one includes the a priori information by inequa-
lity constraints on the length and orientation. This informa-
tion could come from physical constraints (e.g. gravity) or
other sensors. Both approaches are solved iteratively with
the Newton method.

The benefit of the a priori information depends on its va-
riance or on the tightness of the inequality constraints. This
paper shows that the new methods reduce the probability
of wrong fixing with respect to unconstrained integer least-
squares estimation by more than one order of magnitude
even if the a priori information on the length is biased by 1
m. The proposed method is evaluated with both simulated
and real measurements from PolaRx3G receivers of Sep-
tentrio.

INTRODUCTION

Differential carrier phase positioning is used in a wide
range of applications including RTK services, assistance
systems for cars, attitude determination of aircrafts, navi-
gation of robots, and freight stabilization under helicopters.

Fig. 1 shows a helicopter that deposits beams near hu-
man workers. The pilot is not able to see the load, which
results in dangerous situations for both the pilot and the
ground staff. Using of two GNSS receivers (one onboard

Fig. 1 Freight stabilization under helicopters: An a priori
knowledge about the baseline length substantially improves
the reliability of relative carrier phase positioning.

the helicopter and a second one on the carried freight) al-
lows a determination of the relative position. It can then be
used for stabilizing the freight by an assistance system.

Angular constraint

Length constraint
reference receiver

Fig. 2 Integer ambiguity grid: The search space volume of
the float solution is substantially reduced by constraints on
the baseline length and direction. As the length and directi-
on are not perfectly known in many applications, a certain
variation is allowed.

The use of carrier phase measurements allows millimeter
accuracy but introduces integer ambiguities due to the pe-
riodicity of the phase. A reliable resolution of these integer
ambiguities can be achieved by including a priori knowled-
ge on the baseline into the ambiguity resolution: The length
of the rope is essentially known (up to its extension due to
the weight of the load), and its orientation is constrained by
gravity and the energy accumulated in the maneuver.

Fig. 2 visualizes the constrained integer least-squares
estimation for differential carrier phase positioning: The
wavefronts from three satellites are shown, which intersect
in the true receiver position. The pure code solution provi-
des a rough estimate of the receiver position, which leads to
a certain search space volume (shown as circle). The a prio-
ri knowledge on the length and orientation of the baseline
further constrains the search space.

The Least-squares Ambiguity Decorrelation Adjustment
(LAMBDA) method was developed by Teunissen in [1]
to solve the unconstrained integer least-squares estimati-
on. He introduced an integer ambiguity transformation ba-
sed on an alternating sequence of permutations and integer
decorrelations to obtain a sphere-like and largely decorre-
lated search space. Mönikes et al. introduced position do-
main constraints in the integer search in [2], and Teunissen
provided a rigorous theory for integer least-squares estima-
tion with a hard constraint on the baseline length in [3]. He
extended his theory to a soft Gaussian constraint on the ba-



seline length in [4]. However, he did not include any cons-
traints on the baseline orientation. This is a non-trivial ex-
tension as the angles describing the baseline direction enter
the cost function in a highly nonlinear form. However, soft
constraints on the direction could be extremely helpful to
reduce the size of the search space and, thereby, to improve
the reliability of ambiguity resolution.

This paper proposes a maximum a posteriori probability
estimator of the baseline length and direction with soft a
priori information on both parameters. This estimator can
be applied either to double difference measurements or to
multi-frequency linear combinations of double differences.
In [5]-[7], Henkel et al. proposed a class of multi-frequency
code carrier linear combinations that maximize the ambi-
guity discrimination. It was introduced as the ratio between
the wavelength and the doubled standard deviation of the
combination noise to further improve the reliability of inte-
ger ambiguity resolution.

MEASUREMENT MODEL

The double difference carrier phase measurements on
frequencyfm of satellitek are modeled in this paper by

∇∆φk
m = ∇∆rk + λm∇∆Nk

m

−q21m∇∆Ik +∆T k +∇∆ηkφm
, (1)

with the double difference range∇∆rk, the double diffe-
rence integer ambiguity∇∆Nk

m, the double difference io-
nospheric and tropospheric delays∇∆Ik and∇∆T k, the
ratio of frequenciesq1m = f1/fm, and the double diffe-
rence measurement noise∇∆ηkφm

. Obviously, the double
difference atmospheric delays can be neglected for short
baselines as considered in the first part of this paper. A si-
milar model is used for the double difference code measu-
rements, i.e.

∇∆ρkm = ∇∆rk + q21m∇∆Ik +∇∆T k +∇∆ηkρm
. (2)

Two multi-frequency linear combinations are applied to the
double difference carrier phase measurementsλm∇∆φm

and code measurements∇∆ρm: a code carrier linear com-
bination and a code-only combination, i.e.

Ψ =







M∑

m=1

(αmλm∇∆φm + βm∇∆ρm)

M∑

m=1
(β′

m∇∆ρm)






, (3)

whereαm denote the weighting coefficients of the phase
measurements, andβm andβ′

m represent the code coeffi-
cients on frequencym ∈ {1, . . . ,M}. These coefficients
were optimized by Henkel et al. in [5]-[7]; the derivation is
reviewed later in this paper. The combined measurements
Ψ are modeled by

Ψ = Hξ +AN + b+ ε, (4)

whereH describes the differential geometry given by

H =






(e1)T − (eK)T

...
(eK−1)T − (eK)T




 , (5)

with the unit vectorek pointing from thek-th satellite to the
receiver, andξ being the baseline between both receivers. It
can be represented in spherical coordinates by the elevation
ν1, the azimuthν2 and the lengthl, i.e.

ξ = r(ν1, ν2) · l, (6)

with

r(ν1, ν2) =





cos(ν1) cos(ν2)
cos(ν1) sin(ν2)

sin(ν1)



 . (7)

The second term in (4) represents the combined integer am-
biguitiesN with the combination wavelength included in
pre-factor matrixA:

A =

[
λ · I
0

]

. (8)

The unknown biasesb describe multipath with long de-
correlation time, and are introduced to test the robustness
of the constrained ambiguity resolution. The measurement
noiseε ∼ N (0,Σ) is assumed to be white Gaussian noise.

Unconstrained ambiguity resolution

The estimation of integer ambiguities and baselines is in
general performed such that the weighted squared norm of
range residuals is minimized. Teunissen decomposed this
squared norm into three terms in [1]:

min
ξ,N

‖Ψ−Hξ −AN‖2
Σ

−1

= min
N

(

‖N̂ −N‖2
Σ

−1

N̂

+min
ξ

‖ξ̌(N )− ξ‖2
Σ

−1

ξ̌(N)

)

+ ‖P⊥
A
P⊥

HΨ‖2
Σ−1 , (9)

whereN̂ denotes the float ambiguity estimates,ξ̌(N ) is
the fixed baseline estimate, andP⊥

H ,P⊥
Ā are orthogonal

projections defined as

P⊥
H = 1− PH = 1−H

(

HT
Σ

−1H
)−1

HT
Σ

−1

P⊥
Ā = 1− P Ā

= 1− Ā
(

Ā
T
Σ

−1Ā
)−1

Ā
T
Σ

−1, (10)

with
Ā = P⊥

HA. (11)

The float ambiguity estimateŝN are given by

N̂ = arg min
N∈RK×1

‖P⊥
H (Ψ−AN) ‖2

Σ−1

=
(

Ā
T
Σ

−1Ā
)−1

Ā
T
Σ

−1P⊥
HΨ, (12)



with covariance matrixΣ
N̂

=
(

Ā
T
Σ

−1Ā
)−1

. Similarly,

the fixed baseline solutioňξ(N) is given by

ξ̌(N) = min
ξ∈R3×1

‖Ψ−Hξ −AN‖2
Σ−1 , (13)

with the covariance matrixΣξ̌(N) = (HT
Σ

−1H)−1. For
unconstrained ambiguity resolution, the second term in (9)
can be made to zero by settingξ to ξ̌(N). Consequently,
optimal ambiguity resolution reduces to the minimization
of the first term in (9). The last term describes the irreduci-
ble noise. The introduction of constraints on the length and/
or direction of the baseline prevents the settingξ = ξ̌(N )
and, thus, a separate estimation of ambiguities and the ba-
seline is no longer feasible.

INTEGER AMBIGUITY RESOLUTION WITH
TIGHT AND SOFT CONSTRAINTS

The constrained ambiguity resolution is performed in
four steps as shown in Fig. 3. First, an unconstrained float
solutionN̂ is determined from (12). Secondly, a search is
performed which takes some a priori information about the
baseline length (̄l) and direction (̄ν1, ν̄2) into account, and
results in a set of candidates{Ň}. For each of thesěN ,
the baseline parametersl, ν1 and ν2 are estimated itera-
tively with the Newton method. Finally, the integer vector
N with minimum error norm is selected. The efficiency of
the search can be further improved by applying an integer
decorrelation to the float ambiguities similar to the uncons-
trained case [1].

unconstrained float solution

search with constraints

a priori
information

selection of      with minimum

estimation of     or              with

steepest gradient method for each

N̂

{Ň}

ξ l, ν1, ν2

⊆ {l̄, ν̄1, ν̄2}

Ň

N

‖N̂ −N‖2
Σ

−1

N̂

+ ‖ξ̌(N )− ξ‖2
Σ

−1

ξ̌(N)

Fig. 3 Tight and soft constrained integer ambiguity reso-
lution: A priori information is used for both the search and
the baseline estimation.

The notation shall be simplified by denoting the second
term in (9) by

J(ν1, ν2, l,N) = ‖ξ̌(N )− r(ν1, ν2)l‖
2
Σ

−1

ξ̌(N)

. (14)

Tight constraints

The length of the baseline is known in a variety of app-
lications, e.g. the distance between the freight and the he-
licopter in Fig. 1 is given by the length of the rope. This a
priori knowledge can be considered either as a tight or as a
soft constraint allowing some variations.

Length constraints

The minimization ofJ with a tight length constraint can
be written as a Lagrange optimization, i.e.

f(λ,N) = J(ν1, ν2, l,N) + λ ·
(
‖ξ‖2 − l2

)
, (15)

with Lagrange parameterλ. Setting the derivative with re-
spect toξ equal to zero, and solving it forξ yields:

ξ̌λ(N) =
(

Σ
−1
ξ̌(N)

− λI
)−1

Σ
−1
ξ̌(N)

ξ̌(N ), (16)

which is set into the length constraint to obtain

g(λ) = ‖
(

Σ
−1
ξ̌(N)

− λI
)−1

Σ
−1
ξ̌(N)

ξ̌(N )‖2 − l2
!
= 0.

(17)
It can be solved iteratively forλ with the Newton method,
i.e.

λn+1 = λn −
g(λ)

g′(λ)

∣
∣
∣
∣
λ=λn

, (18)

with the gradient

g′(λ) = 2(ξ̌(N ))TΣ−1
ξ̌(N)

(

Σ
−1
ξ̌(N)

− λI
)−3

Σ
−1
ξ̌(N)

ξ̌(N).

(19)
The iterative computation can be initialized withλ0 = 0,
i.e. the unconstrained ambiguity resolution.

Angular constraints

In some applications, the direction of the baseline is
known. Three cases shall be considered: the angleν1 is
known only, the angleν2 is known only, and both angles
are known a priori. Ifν1 is known, the minimization pro-
blem is given by

min
ν2,l,N

(J(ν1, ν2, l,N)) . (20)

Setting the derivatives w.r.t.l andν2 to zero gives

∂

∂l
(J(ν1, ν2, l,N)) =

− 2(ξ̌(N))TΣ−1
ξ̌(N)

r(ν1, ν2)

+ 2l · (r(ν1, ν2))
T
Σ

−1
ξ̌(N)

r(ν1, ν2)
!
= 0, (21)



and

∂

∂ν2
(J(ν1, ν2, l,N)) =

− 2l · (ξ̌(N ))TΣ−1
ξ̌(N)

∂r(ν1, ν2)

∂ν2

+ 2l2 ·

(
∂r(ν1, ν2)

∂ν2

)T

Σ
−1
ξ̌(N)

r(ν1, ν2)
!
= 0. (22)

As (21) and (22) can not be solved forl andν2 in closed
form, an iterative solution based on the Newton method is
suggested, i.e.

ľi(N ) = ľi−1(N)−
∂
∂l

(J(ν1, ν2, l,N))
∂2

∂2l
(J(ν1, ν2, l,N))

∣
∣
∣
∣
∣ ν2=ν̌

i−1
2 (N)

l=ľi−1(N)

,

(23)
and

ν̌i2(N ) = ν̌i−1
2 (N )−

∂
∂ν2

(J(ν1, ν2, l,N))

∂2

∂2ν2
(J(ν1, ν2, l,N))

∣
∣
∣
∣
∣ ν2=ν̌

i−1
2 (N)

l=ľi−1(N)

,

(24)
where the second order derivatives are given by

∂2

∂l2
(J(ν1, ν2, l,N)) = 2(r(ν1, ν2))

T
Σ

−1
ξ̌(N)

r(ν1, ν2),

(25)
and

∂2

∂ν21
(J(ν1, ν2, l,N)) = −2l(ξ̌(N ))TΣ−1

ξ̌(N)

∂2r(ν1, ν2)

∂ν21

+ 2l2
(
∂2r(ν1, ν2)

∂ν21

)T

Σ
−1
ξ̌(N)

r(ν1, ν2)

+ 2l2
(
∂r(ν1, ν2)

∂ν1

)T

Σ
−1
ξ̌(N)

∂r(ν1, ν2)

∂ν1
,

(26)

where∂2r(ν1,ν2)
∂ν2

1
= −r(ν1, ν2).

If ν2 is known instead ofν1, the minimization problem
is given by

min
ν1,l,N

(J(ν1, ν2, l,N)) , (27)

which can be solved iteratively in a similar way. Setting the
derivative w.r.t.ν1 to zero gives

∂

∂ν1
(J(ν1, ν2, l,N)) =

− 2l(ξ̌(N))TΣ−1
ξ̌(N)

∂r(ν1, ν2)

∂ν1

+ 2l2
(
∂r(ν1, ν2)

∂ν1

)T

Σ
−1
ξ(N)r(ν1, ν2)

!
= 0. (28)

The third case includes a tight a priori knowledge of both
angles and, thus, removes the nonlinearity due to the trigo-
nometric functions. The minimization problem turns into

min
l,N

J(ν1, ν2, l,N), (29)

and can be solved in closed form forl, i.e.

l̂(N ) =
(ξ̌(N ))TΣ−1

ξ̌(N)
r(ν1, ν2)

(r(ν1, ν2))TΣ
−1
ξ̌(N)

r(ν1, ν2)
. (30)

Soft constraints

The length and direction of the baseline are not perfect-
ly known in many applications, e.g. the baseline between
the freight and helicopter varies with elongation of the ro-
pe and oscillations due to wind and, thus, does not cor-
respond to a vector in zenith direction of a priori known
length. A similar situation occurs during attitude determi-
nation of aircrafts: In this case, the baseline length between
two receivers on the wings varies due to bending. Therefo-
re, soft constraints are introduced for both length and direc-
tion. These constraints can be either included in the form of
a Gaussian distribution or a uniform distribution of the ba-
seline length and direction.

Gaussian constraints

The constrained ambiguity resolution can be considered
also as a maximum likelihood (ML) estimation or as a ma-
ximum a posteriori probability estimation. The latter one
maximizes the a posteriori probability of the estimates of
ν1, ν2 andl for a given setΨ. This maximization is rewrit-
ten with the rule of Bayes and the assumption of statistical-
ly independentν1, ν2 andl as

max
ν1,ν2,l

p(ν1, ν2, l|Ψ)

= max
ν1,ν2,l

p(Ψ|ν1, ν2, l) ·
p(ν1)p(ν2)p(l)

p(Ψ)
, (31)

where the conditional probability is obtained from

p(Ψ|ν1, ν2, l) =
1

√

(2π)2|Σ|
e−

1
2 ‖Ψ−Hr(ν1,ν2)l−AN‖2

Σ−1

(32)
and the a priori knowledge is assumed to be Gaussian dis-
tributed with known means and variances, i.e.

p(νx) =
1

√

2πσ2
ν̄x

e
−

(νx−ν̄x)2

2σ2
ν̄x , x ∈ {1, 2}

p(l) =
1

√

2πσ2
l̄

e
− (l−l̄)2

2σ2
l̄ , (33)

andp(Ψ) being a normalization given by

p(Ψ) =

∫

p(Ψ|ν1, ν2, l)p(ν1)p(ν2)p(l)dν1dν2dl. (34)

The maximization of (31) can be simplified by taking the
logarithm and omitting the pre-factor that does not depend



onν1, ν2 andl, i.e.

min
ν1,ν2,l,N

J̃(ν1, ν2, l,N)

= min
ν1,ν2,l,N

(
‖Ψ−Hr(ν1, ν2)l −AN‖2

Σ−1

+
(l − l̄)2

σ2
l̄

+
(ν1 − ν̄1)

2

σ2
ν̄1

+
(ν2 − ν̄2)

2

σ2
ν̄2

), (35)

which corresponds to the minimization of the first two
terms of the unconstrained cost function of (9) plus three
additive terms. The optimization overN is done in two
steps: A search of a candidate set (that is described later)
and a selection of the best candidate that minimizes the cost
functionJ̃ . For a fixed candidateN , the optimization over
l andνx, x ∈ {1, 2} is performed by setting the derivatives
equal to zero:

∂

∂l

(

J̃(ν1, ν2, l,N)
)

= −2(ξ̌(N ))TΣ−1
ξ̌(N)

r(ν1, ν2)

+ 2l · (r(ν1, ν2))
T
Σ

−1
ξ̌(N)

r(ν1, ν2) +
2(l − l̄)

σ2
l̄

!
= 0,

(36)

and

∂

∂νx

(

J̃(ν1, ν2, l,N)
)

=

− 2l · (ξ̌(N ))TΣ−1
ξ̌(N)

∂r(ν1, ν2)

∂νx

+ 2l2 ·

(
∂r(ν1, ν2)

∂νx

)T

Σ
−1
ξ(N)r(ν1, ν2)

+
2(νx − ν̄x)

σ2
ν̄x

!
= 0, (37)

which can be solved again iteratively with the Newton me-
thod.

Fig. 4 shows the benefit of tight and soft length cons-
traints for integer least-squares estimation (ILS) [8]: The
tight constraint (TC) reduces the probability of wrong un-
constrained fixing by more than four orders of magnitude
if the a priori length information is correct. The error rates
are based on a simulation of Galileo double difference pha-
se measurements on E1 and E5 of4 epochs for a short ba-
seline of30 m. Phase-only measurements were considered
to avoid code multipath, and a widelane combination with
a wavelength of78.1 cm was used to increase the success
rate. A satellite geometry with8 visible satellites was se-
lected to obtain a typical performance. Obviously, the tight
constraint makes the fixing also sensitive w.r.t. erroneous
a priori information, i.e. it degrades the unconstrained per-
formance if the error in the a priori information exceeds50
cm. The soft constrained (SC) fixing takes the uncertainty
in the length information into account and, thereby, impro-
ves the unconstrained fixing for any quality of the a priori
information.

The reliability of ambiguity resolution can be further im-
proved by including measurements from multiple epochs,
i.e. by generalizing the cost function of (35) to

J̃ =

I∑

i=1

(
‖Ψi −Hirili −AN‖2

Σ−1

+
(li − l̄i)

2

σ2
l̄i

+
(ν1,i − ν̄1,i)

2

σ2
ν̄1,i

+
(ν2,i − ν̄2,i)

2

σ2
ν̄2,i

)

,

(38)

which can be minimized overνx,i and li jointly with the
iterative Newton method.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error of baseline length a priori knowledge [m]

P
ro

ba
bi

lit
y 

of
 w

ro
ng

 fi
xi

ng

 

 

SC-ILS
σl̄ = 10m

SC-ILS
σl̄ = 3.16m

SC-ILS
σl̄ = 1m

TC-ILS

ILS without
constraints

benefit of soft
constrained over
unconstrained and
tightly constrained
integer ambiguity
resolution

Fig. 4 Comparison of unconstrained, soft constrained and
tightly constrained ambiguity resolution for erroneous ba-
seline length a priori information: The tightly constrained
ambiguity resolution outperforms the unconstrained and
soft constrained fixing for perfect a priori knowledge but
is extremely sensitive w.r.t. erroneous a priori information.
The soft constrained ambiguity fixing benefits from the a
priori information even if it is biased.

In then-th step, the estimate of the baseline and ambi-
guity parameters is given by








ν̂n+1
1

ν̂n+1
2

l̂
n+1

N̂
n+1







=







ν̂
n
1

ν̂n
2

l̂
n

N̂
n






− S−1








∂J̃
∂ν1

∂J̃
∂ν2

∂J̃
∂l
∂J̃
∂N







, (39)

whereν̂x, x ∈ {1, 2}, and l̂ include the estimates of all
epochs, and the Hesse matrix is given by

S =
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∂2ν1
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∂2J̃
∂2ν2

∂2J̃
∂ν2∂l
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∂l∂N
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∂ν1∂N

∂2J̃
∂ν2∂N

∂2J̃
∂l∂N

∂2J̃
∂2N
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
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


. (40)



The iterative Newton method does not necessarily con-
verge to the global optimum due to the nonlinearity of the
cost function. One could perform the optimization for se-
veral random initializations around the a priori information
and select the one with minimum̃J to improve the pro-
bability of finding the global minimum. However, a single
initialization was sufficient to find the global minimum in
the following analysis.

Fig. 5 and 6 show the achievable accuracies for the soft
constrained estimation of a vertical baseline withl = 10 m.
The minimization of (38) ensures an optimal trade-off bet-
ween the minimization of the weighted range residuals and
the minimization of the weighted difference between the
estimated baseline parameters and their a priori knowled-
ge. Consequently, the achievable accuracies depend on the
accuracy of the double difference measurements (or, mo-
re specifically, on the accuracy of the widelane phase-only
combination withλ = 78.1 cm) and the accuracy of the
a priori information (σν1 = 30◦, σν2 = ∞, σl = 10cm).
Obviously, the elevation of the baseline can be determined
with a higher accuracy than the length due to the relatively
long baseline.
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Fig. 5 Soft constrained estimation of baseline length for
l = 10 m andν1 = 90◦: The achievable accuracy depends
on the noise level of the measurements, the noise amplifi-
cations due to double differencing, widelane combinations
and the geometry, and the quality of the a priori informa-
tion. The latter one becomes especially beneficial for an
increased phase noise level.

Constrained integer search

The integer ambiguities are determined by a tree search
as shown in Fig. 7. The efficiency of the search can be sub-
stantially improved by some constraints on the length and
direction of the baseline. The following notation shall be
introduced for the tree search: The level in vertical direction
is denoted byk ∈ {1, . . . ,K} corresponding to the ambi-
guity indices,jk ∈ {1, . . . , ck} represents the path number
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Fig. 6 Soft constrained estimation of baseline elevation for
l = 10 m andν1 = 90◦: The a priori knowledge has only a
minor impact on the estimation of the elevation due to the
large baseline length, which enables a precise computation
of its elevation.

at thek-th level, andck is the number of paths at thek-th
level. The set of integer candidates at levelk is denoted by
sk = {Ňk

1 , . . . , Ň
k
ck
}.

The search aims on finding all integer vectorsN that
fulfill ‖N̂ − N‖2

Σ
−1

N̂

≤ χ2, which can also be written in

sequential form as

|Nk − N̂k
jk|j1,...,jk−1

|

≤ σ
N̂k|1,...,k−1

√
√
√
√
√χ2 −

k−1∑

l=1

(

Ň l
jl
− N̂ l

jl|j1,...,jl−1

)2

σ2
N̂l|1,...,l−1

,

(41)

where the conditional ambiguity estimatesN̂ l
jl|j1,...,jl−1

are
determined by classical bootstrapping and, obviously de-
pend on the path fromj1 to jl−1. The standard deviations
σ2
N̂l|1,...,l−1

are also known from bootstrapping and do only

depend on the levels but not on the individual path. Eq. (41)
provides a lower and upper bound for the fixing ofNk at
path numberjk:

uŇk
jk

= N̂jk|j1,...,jk−1
− σ

N̂jk|j1,...,jk−1

·

√
√
√
√
√χ2 −

k−1∑

l=1

(

Ň l
jl
− N̂ l

jl|j1,...,jl−1

)2

σ2
N̂l|1,...,l−1

oŇk
jk

= N̂jk|j1,...,jk−1
+ σ

N̂jk|j1,...,jk−1

·

√
√
√
√
√χ2 −

k−1∑

l=1

(

Ň l
jl
− N̂ l

jl|j1,...,jl−1

)2

σ2
N̂l|1,...,l−1

,

(42)
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Ň2

2
· · ·

...

Ň3
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uŇ3

c3
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uŇK

2
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Fig. 7 Search tree: Constraints on the baseline length and orientation are checked at each path node to reduce the final number
of branches. The tightness of the bounds and, thus, the efficiency of the search, is determined by the prefactorsµl, µν1 andµν2 .

where the dependency on the previous path numbers
j1, . . . , jk−1 has been omitted to simplify notation. The
tree is constructed sequentially with (42) and the total num-
ber of pathscK is reduced by some constraints on the ba-
seline estimate. The latter one is given for path numberjk
by

[
ˇ̂
ξj1,...,jk
ˇ̂
N j1,...,jk

]

=

([

H P kA
]T

Σ
−1

[

H P kA
])−1

[

H P kA
]T

Σ
−1




Ψ− P̄

k
A






Ňj1

...
Ňjk









 , (43)

where the selection matricesP k andP̄
k

are defined as

P k =

[
1
k×k

0
K−k×k

]

P̄
k

=

[
0
k×K−k

1
K−k×K−k

]

. (44)

The notation(̌̂·) has been introduced to denote partial fi-
xing. The spherical baseline parameters can be easily ob-

tained from the cartesian estimates:
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ξxj1,...,jk



 . (45)

The uncertainty of these parameters can be derived from
the covariance matrix

Σ





ˇ̂
ξ
ˇ̂
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
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N
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([

H P kA
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Σ
−1

[

H P kA
])−1

(46)

which leads to

σˇ̂
lk

=

√

trace
(

Σ ˇ̂
ξk

)

. (47)



The angle estimateŝ̌νk1 and ˇ̂νk2 are not Gaussian distribu-
ted. Consequently, the standard deviations have to be deter-
mined by Monte-Carlo simulations from (45). The results
could be stored in a look-up table for realtime applications.

Eq. (45) to (47) are the basis for the constraints on the
baseline length and orientation given by

|
ˇ̂
l
(
Ň1

j1
, . . . , ŇK

jK

)
− l̄| ≤ µl · σˇ̂lk (48)

and

|ˇ̂ν1
(
Ň1

j1
, . . . , ŇK

jK

)
− ν̄1| ≤ µν1 · σˇ̂νk

1

|ˇ̂ν2
(
Ň1

j1
, . . . , ŇK

jK

)
− ν̄2| ≤ µν2 · σˇ̂νk

2
. (49)

The prefactorsµl, µν1 andµν2 were introduced to control
the tightness of the bounds and are constant over all levels.
On the contrary, the standard deviationsσˇ̂

lk
, σˇ̂νk

1
andσˇ̂νk

2

reduce with increasing levels due to a larger number of fi-
xed integer ambiguities.

Fig. 8 shows the number of paths as a function of prefac-
tor µl for each levelk. The benefit of tightening the cons-
traint increases with the levelk, i.e. the number of paths
is reduced by only one order of magnitude for the first le-
vel but by three orders of magnitude at the last level. For
µl → ∞, the number of paths converges to the number
of paths of unconstrained ambiguity resolution. The simu-
lation result refers to the estimation of the E1-E5 Galileo
widelane ambiguities with wavelength of78 cm for a geo-
metry with 8 visible satellites and measurements from5
epochs.
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Fig. 8 Benefit of length constraint for integer search: The
constraint reduces the number of paths by several orders of
magnitude.

MULTI-FREQUENCY LINEAR COMBINATIONS

The reliability of carrier phase positioning can be further
improved if a multi-frequency linear combination of am-
biguities is resolved instead of the individual carrier phase

ambiguities. This can be explained by the increase in the
combination wavelength, which improves the conditioning
of the equation system and, thereby, improves the accuracy
of the float solution.

In [5]-[7], Henkel et al. optimized a class of multi-
frequency linear combinations that include both code and
carrier phase measurements with phase coefficientsαm and
code coefficientsβm, i.e.

λφk =

M∑

m=1

(
αmλmφk

m + βmρkm
)
, (50)

wherem = {1, . . . ,M} denotes the frequency index. The
code and carrier phase measurements can be assumed stati-
stically independent, such that the standard deviation of the
combination noise is given by

σ =

√
√
√
√

M∑

m=1

(

α2
mσ2

φm
+ β2

mσ2
ρm

)

(51)

which depends on the code and phase noise variances. In
this paper, the code noise standard deviations are set to the
Cramer Rao lower bound. It is given in Tab. 1 for the GPS
signals on L1, L2 and L5 at a carrier to noise power ratio
of 45 dB-Hz.

Tab. 1 Cramer Rao bounds for GPS signals on L1, L2 and
L5 atC/N0 = 45dB-Hz

Signal BW [MHz] CRB [cm]
L1-I BPSK(1), C/A 2 · 1.023 78.29
L1-I BPSK(1), C/A 20 · 1.023 25.92
L1-C MBOC, OS 20 · 1.023 11.13
L2-C BPSK(1), OS 20 · 1.023 25.92
L5-I BPSK(10), OS 20 · 1.023 7.83
L5-Q

The linear combination shall scale the geometry term by
a certain predefined factorh1, i.e.

M∑

m=1

(αm + βm)
!
= h1, (52)

whereh1 = 0 corresponds to a geometry-free andh1 = 1
to a geometry-preserving combination. Similarly, the com-
bined first order ionospheric delay shall be scaled by a pre-
defined valueh2, i.e.

M∑

m=1

(αm − βm)q21m
!
= h2, (53)

where the minus sign arises from the code carrier diver-
gence. Moreover, the linear combination of ambiguities
shall correspond to a single wavelength times a single inte-
ger ambiguity:

M∑

m=1

(αmλmNm)
!
= λN. (54)



Tab. 2 Triple-frequency code carrier widelane combinations of maximum discrimination forσφ = 1mm andσρm
= CRBm

h1 h2 L1 L2 L5 λ σ D
1 0 j1 1 j2 −5 j3 4

α1 18.5659 α2 −72.3348 α3 55.4567 3.533 m 10.3 cm 17.17
β1 −0.1394 β2 −0.0424 β3 −0.5060

1 −0.1 j1 1 j2 −5 j3 4
α1 17.3827 α2 −67.7249 α3 51.9224 3.308 m 9.5 cm 17.46
β1 −0.1132 β2 −0.0359 β3 −0.4311

0 −1 j1 −1 j2 5 j3 −4
α1 −12.5565 α2 48.9213 α3 −37.5063 2.389 m 9.5 cm 12.60
β1 0.3557 β2 0.0657 β3 0.7201

0 0 j1 0 j2 −1 j3 1
α1 0 α2 −4.0948 α3 3.9242 1 m 1.3 cm 38.05
β1 0.0140 β2 0.0113 β3 0.1453

Eq. (54) is equivalent to

N =

M∑

m=1

αmλm

λ
︸ ︷︷ ︸

=jm
!
∈Z

Nm. (55)

Finally, the remaining degrees of freedom shall be used to
maximize the ambiguity discrimination which was introdu-
ced in [5] as the ratio between the combination wavelength
and the doubled standard deviation of the combination noi-
se, i.e.

D =
λ

2σ
. (56)

The ambiguity discrimination of (56) shall be maximized
overλ and over alljm andβm, i.e.

max
j1,...,jM ,λ,β1,...,βM

D, (57)

which includes a numerical search and an analytical com-
putation as described in details in [7]. The result of this op-
timization was derived for Galileo by Henkel and Günther
in [5]-[7]. For GPS with its new signals, it is given in Tab.
2.

TEST SET-UP

In this section, the integer ambiguity resolution shall be
verified with real measurements from two PolaRx3G Ga-
lileo receivers of Septentrio. Fig. 9 shows the measure-
ment equipment. The two receivers were connected to two
NavX multi-frequency Galileo signal generators of IFEN
GmbH, which generate high frequency signals. The trans-
mit power was set such that the average carrier to noise
power ratio was 48 dB-Hz. The Galileo receivers conti-
nuously tracked the E1 and E5a signals over30 minutes.
The baseline length was fixed to30 m.

Fig. 10 and 11 show that both the range residuals and
the widelane float ambiguity estimates are unbiased. The
noise in the float ambiguity estimates is significantly lower
than one cycle, which indicates an extremely reliable inte-
ger ambiguity resolution. The range residuals are Gaussian
distributed and refer to the fixed ambiguity solution. Their
standard deviations vary around1 cm, which can be explai-
ned from the1 mm phase noise by its amplification due to
double differencing (factor 2), widelaning (factor 4.1) and
the dilution of precision.

Fig. 9 Measurement equipment for constrained integer ambiguity resolution: Two PolaRx3G Galileo receivers of Septentrio
are connected to two high frequency signal generators NavX of IFEN GmbH.
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Fig. 10 Float estimates of the Galileo E1-E5a widelane
ambiguities on a single epoch basis: The estimates are un-
biased and the noise is significantly lower than one cycle.
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Fig. 11 Range residuals after widelane integer ambiguity
resolution: The residuals of all widelane combinations are
nearly unbiased and the noise level can be derived from the
measurement noise and its amplification by double diffe-
rencing, by the widelane combination and by the dilution
of precision.

CONCLUSION

In this paper, a maximum a posteriori probability estima-
tor was derived for the estimation of the baseline with both
tight and soft constraints on the baseline length and orien-
tation. This a priori information can be provided either as a
Gaussian distribution or as a uniform distribution. The esti-
mation includes a sequential construction of a search tree
and an iterative solution with the Newton algorithm. The
proposed algorithm has two advantages over unconstrained
fixings: first, it reduces the number of paths in the search
tree by several orders of magnitude. Secondly, the probabi-

lity of wrong fixing is reduced but also the robustness over
errors in the a priori information is substantially increased.
The algorithm can be applied to multi-frequency combi-
nations that increase the wavelength and, thereby, further
improve the reliability of integer ambiguity resolution. The
suggested algorithm can be used for any application where
a precise and reliable relative position estimate is required
and some a priori knowledge on the baseline length and/ or
orientation is available.
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