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ABSTRACT

Low-cost GNSS receivers with patch antennas track the
carrier phases of the GNSS signals with millimeter- to
centimeter-level accuracy. However, code multipath of se-
veral tens of metres, frequent half cycle slips, and receiver
clock offsets in the order of milliseconds make reliable ki-
nematic integer ambiguity resolution still challenging.

Low-cost inertial sensors are robust against GNSS signal
shadowing and benefit from a higher measurement rate but
show large integration drifts due to biases in the gyroscope
and acceleration measurements and, require an initializati-
on with another sensor.

In this paper, we couple the information of both sensors
for attitude determination and propose a search algorithm
for cycle slip detection and correction. The search algo-
rithm uses double difference carrier phase, acceleration and
gyroscope measurements, and also considers a priori infor-
mation on the baseline length. The cycle slip corrections
are determined such that the optimum trade-off between
minimizing the squared measurement residuals and mini-
mizing the squared baseline length residuals is found. We
tested the method during various car drives. Measurement
results show that the method reliably corrects all cycle slips
in environments with both high multipath and high receiver
dynamics, and enables a heading determination with an ac-
curacy of0.5◦/ baseline length [m].

INTRODUCTION

Attitude determination is widely performed with inertial
sensors and geodetic GNSS receivers in maritime and ae-
rospace applications. The carrier phase can be tracked with
millimeter-level accuracy and, therefore, is very attractive
for precise attitude determination. Double differences are
formed to eliminate receiver and satellite clock offsets and
biases as well as atmospheric errors. This leaves the dou-
ble difference integer ambiguities and baseline coordinates
as unknowns. Teunissen developed the Least Squares Am-
biguity Decorrelation Adjustment (LAMBDA) method in
[1] to solve the integer least-squares problem. For attitude
determination, the success rate of ambiguity resolution can
be further increased if the baseline length a priori informa-
tion is included in the search process. In [2] and [3], Teu-
nissen developed a constrained LAMBDA method to solve
the constrained integer least-squares problem.

Low-cost GNSS receivers can also track the carrier pha-



se with millimeter- to centimeter-level accuracy. Conse-
quently, they are very attractive for automotive applications
(e.g. heading determination of cars, Fig. 1).
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Fig. 1: Heading determination of a car with two GPS recei-
vers mounted on the roof of the car.

However, there are three fundamental differences bet-
ween attitude determination with geodetic and low-cost
single-frequency GNSS receivers and antennas. Tab. 1 lists
the challenges of low-cost GNSS receivers/ antennas (e.g.
u-blox, Skytraq) and our approach to overcome them.

Tab. 1: Challenges of attitude determination with low-cost
GPS receivers and antennas

• oscillators:
receiver clock offsets in the order of milliseconds
compared to nanoseconds for geodetic receivers,
double difference ambiguity no longer integer valued
our solution:
correction of satellite movement within
time of differential receiver clock offset [4]

• code multipath:
10 m in good environments and
50 m in challenging environments
our solution:
use of code measurements only for
initial ambiguity fixing,
careful selection of satellites and epochs
based on residuals

• cycle slips:
very frequent, half cycle slips, also affecting
multiple satellites simultaneously, and difficult to
distinguish from dynamics and phase multipath
our solution:
integer search using low-cost IMU and
baseline length a priori information,
elevation mask of20◦

We model the double difference carrier phase measure-
ments as proposed by Henkel, Giorgi and Günther in [4]
and by Henkel and Oku in [5] as
(

λϕk
1(t+ δτ1)− λϕl

1(t+ δτ1)
)

−
(

λϕk
2(t+ δτ2)− λϕl

2(t+ δτ2)
)

= ‖~x1(t+ δτ1)− ~x k(t+ δτ1 −∆τk1 )‖
− ‖~x1(t+ δτ1)− ~x l(t+ δτ1 −∆τ l1)‖
− ‖~x2(t+ δτ2)− ~x k(t+ δτ2 −∆τk2 )‖
+ ‖~x2(t+ δτ2)− ~x l(t+ δτ2 −∆τ l2)‖
+ λNkl

12 + λ/2∆Nkl
12(t) +mkl

12(t+ δτ1, t+ δτ2)

+ εkl12(t+ δτ1, t+ δτ2), (1)

with the carrier wavelengthλ, the carrier phase measure-
mentϕk

r of receiverr and satellitek, the receiver clock off-
setδτr, the receiver position~xr , the satellite position~x k,
the double difference (DD) integer ambiguityNkl

12, the half
cycle slip∆Nkl

12, the phase multipathmkl
12 and the phase

noiseεkl12.
We apply the synchronization correction of [4] to Eq. (1)

and consider a static vehicle such that DD cycle slips can
be easily corrected using triple difference phase measure-
ments. After synchronization and cycle slip correction, the
double difference measurement model simplifies to

λϕkl
12 = ~e kl~b12 + λNkl

12 + εkl12, (2)

with ~e kl being the difference in unit vectors pointing from
satellitesk andl to the receivers and~b12 being the baseli-
ne vector between both receivers. The baseline coordinates
and DD integer ambiguities are then determined by a cons-
trained integer least-squares estimation, i.e.

min
~b12,N12

∥

∥

∥

∥

(

λϕ12

ρ12

)

−H~b12 −AN12

∥

∥

∥

∥

2

Σ−1
ϕ12

s. t. ‖~b12‖ !
= l, (3)

whereλϕ12 andρ12 include the DD phase and code mea-
surements (here: of500 epochs (100 s)),N12 is the vector
of double difference integer ambiguities,H andA describe
the mapping of the baseline/ ambiguity parameters to the
measurements,Σϕ12 is the covariance matrix of the double
difference phase and code measurements, andl includes the
baseline length a priori information.

The optimization of Eq. (3) requires a constrained tree
search as described in details in [6] and [4]. Once the am-
biguities are resolved, we perform a precise coasting of the
baseline solution as described in [7]. Finally, we transform
the baseline estimates from the ECEF e-frame to the local
(ENU) navigation (n-) frame, i.e.

~̂bn12 = l ·





cos(θ) sin(ψ)
cos(θ) cos(ψ)

sin(θ)



 = Cn
e
~̂b12

= R1(π/2− ϕ)R3(π/2 + λ)~̂b12, (4)



whereϕ andλ are the latitude and longitude of the receiver,
Ri describes the rotation around thei-th axis, andψ and
θ are the heading and pitch angles. These angles can be
directly derived from Eq. (4) as

ψ = atan
(

(~̂bn12)x/(
~̂bn12)y

)

θ = atan

(

(~̂bn12)z/

√

((~̂bn12)x)
2 + ((~̂bn12)y)

2

)

. (5)

We have tested the initial integer ambiguity resolution
and subsequent phase coasting at the garden ofNymphen-
burg palacein Munich, Germany. Fig. 2 shows the track of
the vehicle in the garden with good satellite visibility and
limited multipath.

Fig. 2: Track of car drive at Nymphenburg palace with good
satellite visibility and limited multipath. The track is sub-
divided into sections of20 s.

Fig. 3 and 4 show the obtained heading and fixed pha-
se residuals. One can observe that the noise level of the
heading estimate is in the order of only0.1◦. The phase re-
siduals of all double differences are in the order of only a
few centimeters throughout the measurement period, which
indicates a correct integer ambiguity resolution.

KINEMATIC CYCLE SLIP DETECTION
AND CORRECTION

Let us now consider a kinematic case in a more chal-
lenging environment. We assume that a synchronization
correction has been applied to the double difference (DD)
carrier phase measurementsϕkl

12 and that their ambiguities
Ňkl

12 have been fixed. The synchronized and fixed DD car-
rier phases are then be modeled as

λ(ϕkl
12 − Ňkl

12) = ~e kl~b12 + λ/2∆Nkl
12 +mkl

12 + εkl12. (6)

If the baseline is predicted from the last epoch to the current
one using the IMU, then the cycle slip correction (CSC) is
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Fig. 3: Heading of track at Nymphenburg palace: The noise
of the heading estimate is in the order of only0.1◦.
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Fig. 4: Phase residuals of fixed baseline solution for track
at Nymphenburg: The phase residuals of all satellites are
far below one wavelength, which indicates a correct initial
ambiguity resolution and a correct detection and correction
of all cycle slips.

easily found by solving (6) for∆Nkl
12, i.e.

∆Ňkl
12 =

[

1

λ/2

(

λ(ϕkl
12 − Ňkl

12)− ~e kl~̂b IMU
12

)

]

. (7)

However, the CSC of (7) becomes critical if the initial ali-
gnment and/ or the calibration of the IMU was not suffi-
ciently accurate. In this case, the alignment and calibration
of the IMU has to be improved (e.g. in a tightly coupled
solution) or an extended search using further information
(e.g. on the baseline length) has to be performed. We con-
sider the second case.



IMPROVED KINEMATIC
CYCLE SLIP DETECTION AND CORRECTION

We would like to improve the CSC by a joint processing
of the fixed DD phase measurements from all satellites. We
additionally extend the measurement vector by including
the baseline estimate of the IMU, i.e.

z =

(

λ(ϕ12 − Ň12)

~̂b IMU
12

)

, (8)

with ϕ12 andŇ12 being the stacked DD carrier phases and
ambiguities from all available satellites with a common re-
ference satellite. As satellite availability is a criticalissue in
urban environments, we consider only a two-dimensional
horizontal baseline vector. A baseline estimate is obtained
from the a priori known baseline lengthl and the predicted
headingψ, i.e.

~̂b IMU
12 = l ·

(

sin(ψ)
cos(ψ)

)

. (9)

Initial alignment of IMU

We start with a rough alignment by transforming the
measured accelerationas and angular rotation rateωs from
the sensor-fixed (s-) frame to the body-fixed (b-) frame, i.e.

abrough = Cb
s ω

s = R1(φ
b
s )R2(θ

b
s )R3(ψ

b
s )a

s

ωb
rough = Cb

s ω
s = R1(φ

b
s )R2(θ

b
s )R3(ψ

b
s )ω

s, (10)

where the roll angleφbs , the pitch angleθbs and the yaw
angleψb

s are approximated from the mounting of the sen-
sor on the body. Subsequently, we averageωb

rough in static
conditions to determine the biasesbbω, which are then sub-
tracted from the measurements:

ωb = ωb
rough − bbω. (11)

The acceleration measurements are also averaged over time
in static conditions to reduce the noise. The obtainedāb

is expressed in terms of the Euler anglesφ, θ, ψ and the
gravitational accelerationg, i.e.

āb = Cb
n ā

n

≈ R1(φ)R2(θ)R3(ψ)(0, 0, g)
T

=





− sin(θ)
cos(θ) sin(φ)
cos(θ) cos(φ)



 · g. (12)

The roll and pitch angles can then be derived from Eq. (12)
without the need of knowingg as

φ = atan
(

āby/ā
b
z

)

θ = atan
(

−ābx/
√

(āby)
2 + (ābz)

2
)

. (13)

We obtained the initial heading angleψ from Eq. (5). Once
the Euler angles and a rough estimate of the absolute po-
sition (longitudeλ, latitudeϕ) is available from GPS, the
coordinate frame transformation from the b-frame to the
ECEF e-frame is determined as

Ce
b = Ce

nC
n
b (14)

with

Ce
n =





− sin(ϕ) cos(λ) − sin(λ) − cos(ϕ) cos(λ)
− sin(ϕ) sin(λ) cos(λ) − cos(ϕ) sin(λ)

cos(ϕ) 0 − sin(ϕ)





(15)
and

Cn
b = (Cb

n )
−1 = (R1(φ)R2(θ)R3(ψ))

−1 . (16)

The rotation matrixCb
e = (Ce

b)
−1 is then transformed to a

Quaternion as described by Jekeli in [8], i.e.

q =
1

‖[qa, qb, qc, qd]‖
· [qa, qb, qc, qd]T (17)

with the four quaternion elements

qa =
1

2

√

1 + (Cb
e )(1,1) + (Cb

e )(2,2) + (Cb
e )(3,3)

qb =
1

4qa
((Cb

e )(3,2) − (Cb
e )(2,3))

qc =
1

4qa
((Cb

e )(1,3) − (Cb
e )(3,1))

qd =
1

4qa
((Cb

e )(2,1) − (Cb
e )(1,2)). (18)

Orientation integration

Jekeli derived the time-derivative ofCb
e in [8] as

Ċb
e = Cb

eΩ
e
be, (19)

which represents a differential equation with unknownCb
e .

The skew-symmetric matrixΩe
be is given by

Ωe
be =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 , (20)

where the angular rotation ratesωi of the e-frame w.r.t. the
b-frame are obtained from Eq. (11) by subtracting the earth
rotation rate, i.e.

(ω1, ω2, ω3)
T = ωb − Cb

e · (0, 0, ωE)
T =: ωb

be. (21)

The differential equation of (19) shall be solved with Qua-
ternions. Jekeli transformed the3 × 3 matrix equation of
(19) to the4× 1 vector equation

q̇ =
1

2
Aqq, (22)



with the quaternionq and the matrix of angular velocities
Aq. The latter one is given by

Aq =









0 ω1 ω2 ω3

−ω1 0 ω3 −ω2

−ω2 −ω3 0 ω1

−ω3 ω2 −ω1 0









. (24)

We performed the integration of the Quaternion with the
third order Runge-Kutta method (see Jekeli [8]), i.e. the
Quaternion at timetn+1 is given by

q(tn+1) = q(tn + h) (25)

= q(tn) + h ·
(

1

6
δq0 +

2

3
δq1 +

1

6
δq2

)

,

whereh = 2δt denotes the integration time andδq0, δq1
andδq2 denote the coefficients given by

δq0 =
1

2
Aq(tn)q(tn)

δq1 =
1

2
Aq(tn +

h

2
) (q(tn) + h/2δq0)

δq2 =
1

2
Aq(tn + h) (q(tn)− hδq0 + 2hδq1) .(26)

Once the integrated quaternion is determined, we can trans-
form it back to a rotation matrix and obtain Eq. (23) accor-
ding to Jekeli [8].

Multiplying from the left by(Ce
n)

−1 yields the transfor-
mation matrix from the b-frame to the n-frame, i.e.

Cn
b (tn+1) = (Ce

n(tn+1))
−1Ce

b(tn+1). (27)

The roll angle is then given by

φ(tn+1) = arctan

(

(Cn
b (tn+1))(2,3)

(Cn
b (tn+1))(3,3)

)

, (28)

and the pitch angle follows as

θ(tn+1) = − arcsin((Cn
b (tn+1))(1,3)). (29)

The yaw angle/ heading is obtained as

ψ(tn+1) = arctan

(

(Cn
b (tn+1))(1,2)

(Cn
b (tn+1))(1,1)

)

. (30)

Constrained integer tree search

The cycle corrections∆N12 and the baseline~b12 are de-
termined from the measurements of Eq. (8) by a constrai-
ned integer least-squares estimation, i.e.

min
~b12,∆N12

‖z −H~b12 −A∆N12‖2Σ−1
z

s. t. ‖~b12‖ = l.

(31)

The minimization over∆N12 implies a search of all CSC
candidates inside a predefined search space volumeχ2. We
perform a Lagrange optimization and write the search as an
inequality (see Teunissen [1]-[2]), i.e.

min
~b12

(

‖z −Hb12 −A∆N12‖2Σ−1
z

+ µ · (‖b12‖2 − l2)
)

≤ χ2, (32)

with Lagrange parameterµ. The weighted sum of squared
measurement residuals was decomposed by Teunissen into
three terms: a weighted sum of squared ambiguity (here:
cycle slip) residuals, a weighted sum of squared baseline
residuals and a term for the irreducible noise, i.e.

‖z −Hb12 −A∆N12‖2Σ−1
z

= ‖∆N̂12 −∆N12‖2Σ−1

N̂12

+ ‖b̌12(∆N12)− b12‖2Σ−1

b̌12

+ ‖P⊥
Ā P

⊥
H z‖2Σ−1

z
, (33)

with P⊥
H being the orthogonal projector on the space ofH

andĀ = P⊥
HA. The first term on the right side of Eq. (33)

can be further developed by using a triangular decomposi-
tion, which leads to a weighted sum of squaredconditional
ambiguity residuals, i.e.

‖∆N̂12 −∆N12‖2Σ−1

∆N̂12

=

k
∑

l=1

(∆N l
12 −∆N̂

l|1,...,l−1
12 )2

(σ
∆N̂

l|1,...,l−1
12

)2
,

(34)
where the conditional cycle slip corrections∆N̂ l|1,...,l−1

12

and the conditional standard deviationsσ
∆N̂

l|1,...,l−1
12

were

derived e.g. by Teunissen in [1]. Setting Eq. (34) into Eq.
(33) and setting the obtained error decomposition into the
inequality of (32) yields

(∆Nk
12 −∆N̂

k|1,...,k−1
12 )2

σ2

∆N̂
k|1,...,k−1
12

≤ χ2 − ‖P⊥
Ā P

⊥
H z‖2Σ−1

z

−
k−1
∑

l=1

(∆N l
12 −∆N̂

l|1,...,l−1
12 )2

(σ
∆N̂

l|1,...,l−1
12

)2

− min
~b12,µ

(

‖~̌b12(N12)−~b12‖2Σ−1

~̌b12

+ µ · (‖~b12‖2 − l2)

)

.

(35)

There are two important aspects to note: First, the right side
of inequality (35) only depends on thepreviousCSC, i.e.
∆N l

12 with l < k, which enables a sequential tree search
as shown in Fig. 5.

Secondly, the Lagrange optimization forces the baseline
estimate to fulfill the length constraint. This implies thatthe

Cb
e (tn+1) =





q2a + q2b − q2c − q2d 2(qbqc − qaqd) 2(qbqd + qaqc)
2(qbqc + qaqd) q2a − q2b + q2c − q2d 2(qcqd − qaqb)
2(qbqd − qaqc) 2(qcqd + qaqb) q2a − q2b − q2c + q2d



 (23)
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Fig. 5: Integer tree search for cycle slip correction

weighted sum of squared baseline residuals no longer va-
nishes. Thereby, the search space volume for the CSC can-
didates is substantially reduced compared to the uncons-
trained search.

Solving the inequality (35) yields a lower and an upper
bound on the search interval for thek-th ambiguity, i.e.

∆Nk
12 ≥ ∆N̂

k|1,...,k−1
12 − σ

∆N̂
k|1,...,k−1
12

√
R

∆Nk
12 ≤ ∆N̂

k|1,...,k−1
12 + σ

∆N̂
k|1,...,k−1
12

√
R, (36)

with R being the right side of (35). Let us now perform
the minimization in the last row of (35). We start by setting
the derivative w.r.t.~b12 to zero, which leads to the baseline
estimate

b̂12(µ) = (Λ(µ))−1Σ−1
b̌12
b̌12(N12), (37)

with Λ(µ) = Σ−1
b̌12

+ µ1. Setting b̂12(µ) into the length
constraint results in a root-finding problem:

f(µ) = ‖b̂12(µ)‖2 − l2
!
= 0. (38)

The roots are determined iteratively with the Newton me-
thod, i.e.

µ(n+1) = µ(n) − f(µ)/
∂

∂µ
f(µ)

∣

∣

∣

∣

µ=µ(n)

, (39)

which requires the derivative of a matrix inverse. We know
that

Λ(µ) · (Λ−1(µ))
!
= 1. (40)

Taking the derivative w.r.t.µ yields:

∂

∂µ
Λ(µ) · (Λ−1(µ))) + Λ(µ) · ∂

∂µ
(Λ−1(µ)))

!
= 0, (41)

which is solved for∂/∂µ(Λ−1(µ)):

∂

∂µ
(Λ−1(µ))) = −(Λ−1(µ))

∂

∂µ
Λ(µ) · (Λ−1(µ))), (42)

and can be easily determined in closed form.

MEASUREMENT RESULTS

Two low-cost single frequency GPS patch antennas we-
re mounted on the roof of a car along its longitudinal axis
as shown in Fig. 1. The baseline length was1.45 m. The
antennas were connected to two u-blox LEA 6T GPS re-
ceivers, which provide both code and carrier phase measu-
rements. We also used the chip MPU 9150 of Invensense,
which includes both a three-axes accelerometer and a three-
axes gyroscope and was accessed by an own circuit. Fig. 6
shows the complete vehicle track.

Fig. 6: Map of complete vehicle track: the section (1) is in a
high multipath environment. Section (2) includes a slalom
drive with high receiver dynamics.

The section labeled by (1) is enlarged in Fig. 7 and in-
cludes a narrow street passage where all satellite signals are
two times shadowed by trees.

Fig. 7: Section (1) of vehicle track corresponds to the time
interval[36 s, 56 s] of the total track of Fig. 6, and includes
a narrow street passage surrounded by trees and buildings.

The section labeled by (2) is enlarged in Fig. 8 and in-
cludes a slalom drive with high receiver dynamics.

The signal shadowing by trees in Fig. 7 reduces the re-
ceived signal power and causes numerous cycle slips. Fig. 9
shows the PRNs (without the reference satellite) that are af-
fected by a cycle slip at a certain epoch. The cycle slips we-
re detected with the proposed search algorithm using both
GPS and INS measurements and the baseline length a prio-
ri information. One can observe that the5 visible satellites
are affected by numerous cycle slips and that several satel-
lites are also affected simultaneously by cycle slips.



Fig. 8: Section (2) of vehicle track corresponds to the ti-
me interval[240 s, 255 s] of the total track of Fig. 6, and
includes a slalom drive with high receiver dynamics.

Tab. 2 shows the relationship between the frequency of
cycle slips and the satellite elevation for our5 min test
drive. The satellites of lower elevation showed more cy-
cle slips than the ones of higher elevation but all satellites
were affected by a significant number of cycle slips.

PRN number of cycle slips satellite elevation
21 37 44.5◦

25 99 35.0◦

27 19 60.6◦

30 62 42.5◦

31 54 50.5◦

Tab. 2: Cycle slip statistics: The satellites of lower elevation
show more cycle slips than the ones of higher elevation but
all satellites are affected by frequent cycle slips.

Tab. 3 gives an insight into the simultaneous occurrence
of cycle slips at multiple satellites.31 out of 1500 epochs
were affected by two simultaneous cycle slips and2 epochs
showed3 satellites with simultaneous cycle slips. We al-
so observed some epochs where all satellites were affected
by cycle slips. Such events could be prevented by vector
tracking loops as described in [13]. However, all satellites
(or, in a few cases, all except one satellite) were showing
the same cycle slip. This indicates that the cycle slips were
most likely caused by a single cycle slip of the reference
satellite (and, in a few cases, one additional cycle slip at
another satellite).

number of epochs number of simultaneous cycle slips
171 1
31 2
2 3
3 4
4 5

Tab. 3: Statistics of cycle slips:171 epochs were affected by
one cycle slip, which corresponds to one cycle slip every2
s on average. There were even4 epochs, where cycle slips
were observed simultaneously at all satellites.

0 100 200 300

5

10

15

20

25

30

Time [s]

P
R

N

50.0 50.4 50.8 51.2 51.6
20

22

24

26

28

30

32

Fig. 9: Numerous cycle slips can be observed throughout
the measurement test. In the narrow street passage of (1),
trees are bridging the road and cause cycle slips at5 satel-
lites simultaneously.

Let us now analyze the benefit of the GPS/ INS-coupled
cycle slip correction (CSC) over the pure GPS-based CSC
for the complete receiver track of Fig. 6. Fig. 10 shows
the fixed phase residuals after GPS only based CSC for
all available double differences. Numerous cycle slips were
corrected but there remain occasional jumps up to almost1
m due to wrongly corrected or missed cycle slips.
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Fig. 10: Fixed phase residualsafter GPS-based cycle slip
detection and correction: Numerous cycle slips are correc-
ted which results in lower residuals. However, there still
remain undetected cycle slips.

Fig. 11 shows the fixed phase residuals after GPS/ INS-
coupled CSC. One can observe that the residuals are redu-
ced to less thanλ/2 for all satellites throughout the mea-
surement period. We conclude that the acceleration and an-
gular rotation rate measurements and the baseline length a



priori information enable a reliable detection and correcti-
on of cycle slips.
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Fig. 11: Fixed phase residualsafter GPS/ INS-based cycle
slip detection and correction: The fixed phase residuals are
reduced to less thanλ/2 for all satellites throughout the
measurement period.

Fig. 12 compares the heading estimates using GPS-only
CSC with the heading estimates using joint GPS/ INS CSC.
The two enlarged sections refer the vehicle tracks of Fig. 7
and Fig. 8. In the first section, we can observe some jumps
in the GPS-only based heading at the beginning and end
of the section. At these epochs, the car was driving below
the two depicted trees in Fig. 7, and some cycle slips were
missed or wrongly corrected leading to heading errors of
up to 10 degrees. Similarly, the GPS-based CSC does not
properly correct some cycle slips around160 s resulting
in heading errors of up to20 degrees for100 s. The INS/
GPS-coupled CSC enables aninstantaneousand reliable
correction of all cycle slips and, thereby, a precise heading
estimation with an accuracy of0.5◦/ baseline length [m].
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CONCLUSION

Autonomous driving of cars requires a precise position
and attitude information in real-time at low cost. The atti-
tude can be derived from the double difference phase mea-
surements of two low-cost GPS receivers. However, there
is a need for reliable integer ambiguity resolution and cycle
slip detection and correction.
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Fig. 12: Heading estimation with GPS-only CSC and joint
GPS/ INS CSC: If only GPS measurements are used, some
cycle slips are missed or wrongly corrected leading to hea-
ding errors of up to20 degrees for time spans up to100 s.
The use of a low-cost IMU enables a reliable correction of
all cycle slips and, thereby, a precise heading estimation.

In this paper, a cycle slip correction search algorithm was
described, which jointly considers the double difference
phase measurements from all visible satellites, the gyrosco-
pe and acceleration measurements, and the baseline length
a priori information. The proposed method finds the opti-
mum trade-off between minimizing the squared measure-
ment residuals and minimizing the squared baseline length
residuals. Various test drives have been conducted and mea-
surement results showed that a reliable detection and cor-
recting of cycle slips is feasible both in sections with sub-
stantial signal shadowing (e.g. below trees) and in sections
with high receiver dynamics. The obtained heading accura-
cy was in the order of0.5◦/ baseline length [m].
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