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Abstract—A precise and reliable position and attitude infor- the ambiguities need to be re-adjusted. Moreover, the use

mation is needed with high availability in many applications. of low-cost GNSS receivers/ antennas and inertial sensors
In this paper, we describe a multi-sensor fusion of two GNSS implies some additional challenges:

receivers, a virtual reference station, an inertial sensgra camera

and geo-referenced satellite/ aerial images. The visual pitioning .

requires a pre-processing of the images: First, the camerariages Challenges of low-cost GNSS receivers/ antennas:

are projected to bird view by a homogeneous projection. A « code multipath of several tens of metres

color transformation and correction, a morphological operation, . frequent half and full cycle slips

and an edge and corner detection are subsequently applied to Lo . N
extract distinctive image points. Features (e.g. street nikers) are « lack of timing input and precise synchronization

determined by matching subsets of these distinctive imageomts « single frequency receivers, i.e. no elimination or

with a template. This matching implies a search of the optimm estimation of ionospheric delays

scaling, rptation and translation of the sub§et of distinc’lye image Challenges of low-cost inertial sensors:

points with respect to the center of gravity of the point clowd.

The matching is substantially simplified by using a principd

component analysis to determine the orientation of the featres.
Finally, the features from the pre-processed camera and  The ambiguity resolution remains challenging also over

satellite/ aerial images are matched with an iterative closst point multiple epochs as both position and code multipath are

algorithm. As the satellite/ aerial images are geo-refereted, the . . .

absolute position of the camera can then be derived. This abkite  cNa@nging over time and, thus, there is only a small redundanc

position estimate is then integrated in the sensor fusion. The ambiguity resolution could be substantially simplified
We show that the vision based position information substan- some additionaindependenposition information is available.

tially simplifies the GNSS carrier phase ambiguity resoluton. The This information could come from visual positioning with

multi-sensor fusion was also verified in a test drive. We obseed 5 aras and geo-referenced satellite/ aerial images.

a substantial improvement of the positioning accuracy comared - Lo ' L

to a GPS/ INS-only solution. This paper has tvv_o_ objectlves. Thg flrst_objectl_ve is to sh_ow

the achievable positioning accuracies with a tight couplin

of low-cost GNSS and INS. The second objective is the

determination of an absolute position from camera imagds an

geo-referenced satellite/ aerial images, and its integramnto

I. INTRODUCTION the multi-sensor tight coupling.

« biases of gyroscope and accelerometer and their variation

Index Terms—Sensor fusion, Tight coupling, Satellite Naviga-
tion, Inertial Navigation, Visual Navigation, SLAM.

The autonomous driving of vehicles is coming within the
next few years. The navigation of autonomous cars is chal- Il. TIGHT COUPLING OFGNSSAND INS
lenging as a botlpreciseand reliable position and attitude In this section, we describe the tight coupling of GNSS
information is needed irany environmeniat all times A and INS. A Kalman filter [6] is widely used since it uses
multi-sensor fusion will be performed to achieve the neagss both the measurements and a state space model (describing
performance. The use of GNSS receivers is attractive @¢ vehicle dynamics). It performs a state prediction aatest
GNSS enables an unbiased absolute position determinatiiflate such that the variance of the a posteriori state a&&im
with centimeter-level accuracy. is minimized. A Kalman filter is attractive for real-time
However, the carrier phase integer ambiguities need to @plications as it performs an epoch-by-epoch processing
resolved to achieve this high accuracy. This is a non-triviwith moderate memory and processing power requirements.
task as the sum of all ranging errors needs to be smaller
than a small fraction of the wavelength 89 cm. As GNSS ~ Measurements:
signals are often shadowed by buildings, trees, bridges ofe Pseudorange, carrier phase and Doppler measurements
tunnels, the phase tracking loops frequently loose lock and of two GNSS receivers mounted on vehicle



o Pseudorange and carrier phase measurements of
a Virtual Reference Station (VRS) :
« 3D acceleration and angular rate measurements of vehi

Estimated parameters:

« Absolute position, velocity and acceleration of vehicle
« Attitude (roll, pitch, heading) and angular rates of vedicl
« Single and double difference carrier phase ambiguities
« Single difference code multipath parameters ~ ESSEes
« biases of accelerometer and gyroscope

A o,

We use an extended Kalman filter [6] due to the non-line ' o - _
relationship between the GNSS measurements and the attit i £ e oezoo,
angles. For a detailed description of the tight coupling, ; 7 rY)

would like to refer to [1], [2] and [3].
The measurement set-up includes Fig. 2. Comparison of ANavS position solution with geodetéerence
system (Applanix) in a relatively "easy” urban environmeiibe positions
differ by less thanl0 cm, which is below the resolution of the images. The

o 2 u-blox LEA 6T GPS receivers (5 Hz) float GPS-only solution has an error ef 75 cm.
o 1 MPU 9150 inertial sensor from Invensense (100 Hz)

« 1 Virtual reference station from Axionet (1 Hz) . ) L
the reference (Applanix) solution can be observed, which is

Th f the hard i sh i Fig. 1. T uite impressive result for this environment and the used lo
GNSZ arrangement of the a:jr ware IS ];5 ;l)wn 'E, Ilg- ) e st hardware. The offset is rather constant, which indgat
antennas are mounted on top of the vehicle 10 obtif} iy error in the ambiguity resolution. The discontiiasi

s attitude. Th‘? antennas are ahgne_d_ with the Io_ng|tud|nr?l the enlarged sections of the ANavS and Applanix solutions
axis of the vehicle such that no additional corrections ne%ge again an artifact of the limited image resolution

to be applied. The Virtual Reference Station (VRS) serves as
a reference station. It is considered as third receiver in ou
notation. Thus, the geometry of the three receivers is ful
described by the attitude baselihg, and the RTK baseline
b5 between the VRS and the first (front) GNSS antenna.

Virtual
reference North  heading
station f

1st GPS receiver

IMU

_ ) Fig. 3. Comparison of ANavS position solution with geodeté&erence
Fig. 1. Measurement set-up at vehicle system (Applanix) in a “"challenging” urban environment.eTpositions differ
by only ~ 35 cm, which corresponds to the resolution of the images.

Fig. 2 shows the achievable absolute positioning accuracy
for the tightly coupled, ambiguity fixed RTK baseline estima Fig. 4 shows the cumulative distribution of the horizontal
tion. The enlarged section shows that our (ANavS) positigrosition error of our low-cost solution for 30 minutes drive
solution differs by less than) cm from the geodetic referencein the city of Wolfsburg. One can observe thatd&% (1o)
(Applanix) solution. Obviously, this error is below the igea of the time the horizontal position error is less thgn6 cm.
resolution, which explains the discontinuous curves fathboThis is sufficient for keeping a vehicle on its lane.
solutions. The float GPS-only solution is also shown and However, the cumulative distribution also shows that the
deviates by~ 75 cm from the reference. position error exceed¥® cm in 10% of the time. This indicates
Fig. 3 shows a similar result for a more challenging utthat the ambiguity fixing, cycle slip correction and IMU bias
ban environment: The car drives very close to a multi-stogstimation are sometimes erroneous, and another independe
building. An offset of only35 cm between our (ANavS) andsensor (e.g. camera) is required.
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Fig. 4. Cumulative distribution of horizontal position @rr The horizontal
position error is less thar37.6 cm in 68 % of the time, which is an
excellent performance for low-cost GNSS and INS. Howeves, dumulative
distribution becomes quite flat for errors of more thi@hcm. This indicates
that the ambiguity fixing, cycle slip correction and IMU biastimation
are sometimes erroneous, and another independent sengorcdeera) is
required.

IIl. TIGHT COUPLING OFGNSS, INSAND
VISUAL POSITIONING

A. Image pre-processing

The extraction of these feature points from the camera
images involves the following steps: First, a homogeneous
projection (Inverse Perspective Mapping - IPM) is applied t
transform the camera images from the driver's perspective
to bird view. Thereby, we reconstruct a linear relationship
between distances in the image and respective distances in
the real world.

Fig. 6 was taken from Burger [4] and shows a street marker
as taken from the camera’s perspective (left subfigure) and
from bird view (right subfigure). It is also enlarged to shdwe t
high resolution of the street marker. The relationship leetw
the vector of world-frame coordinates and the vector of
image-plane coordinatgsis given by

X a b c T

wl vy |=|defl|]y] (1)
1 g h 1 1
P H 3

with the scaling factobV and the homogeneous transformation
matrix H. The knowledge offf is of essential importance to
eliminate the optical distortion and to reconstruct theyiodl
shape and angles of an object. In our application, we conside
a set of known 2D pointg of a calibration object (parking lot)

of the camera image and the respective set of 2D pgirts

In this section, we describe the visual positioning and itbe real-world. The distances of the latter one were detezthi

integration in our tightly coupled sensor fusion. The visuavith a laser as described in [4].
positioning is based on a matching of camera images and

geo-referenced satellite/ aerial images (i.e. where tts#tipn

of each pixel is known) [4]. It is sufficient to use some
characteristic image points (e.g. corners of street mayKer
visual positioning.

Fig. 5 shows a functional diagram for the sensor fusion
We perform a tight coupling with an extended Kalman filter.
It predicts the state vector with a movement model and subsi
quently updates the state prediction with the measuremen§
either from the GNSS receivers, Virtual reference station
inertial sensor or Visual Positioning Unit, or any combioat
of these measurements.

State initialization GNSS receiverg Virtual reference statio

i ~

State prediction

State update

T AN

Movement model

Inertial sensors Visual Positioning Unit

Fig. 5. Functional diagram of sensor fusion with Kalman filtarst, the state
vector is initialized and predicted with a movement modelb&quently,
it is updated with measurements. This state update is peerwith the
measurements either from the GNSS receivers, Virtual eater station,
inertial sensor or Visual Positioning Unit, or any combioat of these
measurements.

Fig. 6. Homogenous projection: The left subfigure includes 2D cam-
era image taken from the driver's perspective. The rightfigute shows
the enlarged 2D street marker after transformation to bievwsing the
homogenous projection.

We will briefly derive the determination di. Dividing Eq.
(1) by W yields

a b c T
d

x e f Yy
g h 1 1

Y = 5 (2)
1 T
(g h i]|y
1

with W = gx + hy + i. The denominator describes the effect
of the non-linear perspective transformation. Theand Y



components follow from Eq. (2) as

X _ ax+by+c

= gz+hyt+i (3)
Y _ dztey+f

- gr+hy+i*

Multiplying X andY by gx + hy + ¢ and re-arranging gives
Xi = ar+by+c—9gXx—hXy

. 4
Yi = de+4ey+ f—gYxr—hYy, (4)
which can also be written in matrix-vector notation as
a
b
XZ,_:L'yIOOOfX:Uny
Y| |0 00 2z y 1 =Yz -Yy
g Fig. 7. Camera image in bird-view before and after colorgfarmation: The
h conversation to gray-scale and black-white is performeglitoinate irrelevant

5) information.

The variablei is a scaling factor that can be absorbed by the
other elementga,b,...,h} of H, i.e.

a
b
X| |z y 1 00 0 —Xo —Xy .
Y| |0 00z y 1 Yz Yy -
g
h
(6)
and the homogenous projection becomes f
a b @
H = CZ e f (7) Fig. 8. Principal Component Analysis (PCA) of street magkinThe center
g Lol of gravity is depicted in white and the first principal compatvector in red.

The 5 point clouds are highlighted in different colors.
For n matched feature points, we obtain a systen2of
equations witl8 unknowns. This means that we need at least .
n = 4 image points to obtain an exact solution. If more featun_aend resistant to weather ch_ange_s. The shape of thes_e pattern
points are available, the transformation matFixis estimated IS used to det_ect and c_|a35|fy objects O.f our camera Image.
by a least-squares adjustment. Each pattern is saved in a database with detailed informatio
Subsequently, we detect the street markers by performjng ?gch as. [4]: )
a color transformation and reduction with adaptive brigsg ¢ horizontal and vertical length
correction to focus on relevant features as shown in Figb), ( ¢ center of gravity - COG
a subsequent morphological operation to enhance thewsteuct * first and second principal component vector
recognition, (c) an edge and corner detection to extractfea * description.
points, and (d) a point matching of the corner points with a The absolute heading is obtained from the first principal
template to recognize the street markers [4]. component/ eigenvector as
Thg extragthn of thg c.hara_ctelrlstlc image pomt; from the 9¢ — /2 — arctan (ypen/Tpca) - ®)
satellite/ aerial images is in principal more challenging do
their lower resolution. Therefore, we use a Maximally Sgabl o )
Extremal Region (MSER) detector and a Haar feature-bad@d Localization and Mapping
classifier in this step. The matching of the characterigtiage In this section, we introduce our Visual Simultaneous Lecal
points with the satellite/ aerial images can be simplifiethd ization and Mapping (V-SLAM) which continuously estimates
orientation of the camera images corresponds to the otienta position and heading information of a vehicle in a previgusl
of the satellite images. We use a Principal Component Aialy&inknown’ environment. We build a map with available object
(PCA) to estimate the orientation of point clouds and tfeatures from our camera. Additionally, we build a map
determine and compare the magnifying ratio of objects. hvailable from online services like Google maps with a numbe
particular, it provides robust heading information of ilistive of landmarks, i.e. street and road markings. Based on the
point pattern especially for traffic arrows as shown in Fig. &bsolute position of these keypoints, the camera positaon ¢
Street markings are used to determine the absolute pasitiba estimated. If new street markings become visible, thay ca
The big advantage is that they are standardized [7] in side dme added to our map to improve the accuracy and to keep
shape, day and night visibility, chromaticity point etc. As the point cloud of street markings updated. For real time
result, they are distinct, easy to detect and robust inilight capability, our system needs a rough absolute positionep ke



the search time for corresponding point clouds as short &
possible.

In our approach, the position and attitude of the vehicle
are first estimated in a separate vision system. We call it th
Visual Positioning Unit - VPU. In a further step, we provide
the output data as an input to our extended Kalman filter witli
GPS and INS as additional measurements. In addition, we
a key-point based approach for localization and mappin wit|
the following notation [4]:

o positions ofn street marking corners are represented ir;
the camera frame agi’ ...,  [pixel] for the camera
imagelt, g€ {1,...,f},

o landmark representation by cloud of key points with
coordinategp’! € R? in camera frame:, with n being
the number of corners andbeing the landmark/ point
cloud id,

« positions of street marking corners are represented in t
aerial frame asfy’j ... 77 [pixel] with the correspond-
ing Google Maps image&/™, g € {1,..., f}.

o landmark representation by cloud of key points with
coordinatep?®* € R% in aerial frameae, with n being - gel — pel _ coqel Eq. (10) simplifies to
the number of corners and being the point cloud id,

Fig. 9. VPU for street marking localization in closer sumding to the car.

2

o landmark representation by cloud of key points with {g,f{} = argmin, Z ‘ f’f{l —s- R-p;?f’k ‘ . (10)
coordinategp?™* € R? in geographic coordinates with T
i=1...n,j=1...masthe hquzontal and vertical tile,, .. gives
of our Google Maps map and il . ’ el /|| ae’kH (11)
« landmark center of gravitgog?™"* € R? in geographic 5P|/ 11Pn o

coordinates for point cloud ié. The minimization with respect to? is performed with a

In section 11l-A we have introduced a method to transforringular value decomposition (SVD), i.e.
our camera image into a so called bird-view where features caek kT T
on the street surface will keep their magnification aftengra SVD (p" (P > =Usv 12)
formation and the distances of world planes will be cal@dat 5 the rotation matrix follows as
from their perspective images to anticipate the uncertsaf .
the measurement. In the next step we determine and extract R=V'U. (13)

relevant features in each image and evaluate them with aprAcbaim we use the principal component analysis to deter-

known point pattern. ) . . mine an approximation of the difference in orientation asgl
Therefore, the extracted point clouds with coordinasg$ Aa = |a%Pee — qaerea|. Accordingly, we rotate the camera
. . n n . )
of the camera images; ... are stored in a local Map. gphject point clouds by the rotation matrik’,,(Aa) to an

Our point cloud database for aerial imagé{?" - I§™ i angle similar to the aerial one and, thereby, to simplify the
composed of the clouds of points with coordinatés* for gearch space aR, i.e.

street markingk. )
{3, R} = argmin&RHRlnﬁZ’l —sR-pk H . (14)
A GPS-based code-only position estimate is sufficient to

load the closer surrounding representation of street mgrki! N€ relative rotation anglé is then obtained by = a + Aa.
coordinate®! as shown in Fig. 9 Finally, the absolute camera position is determined using
¢ . 9.

The coordinate transformation fropf.c* into p&! can be the geometric model of Burger [4] given by

describ_ed by a rotation matri, a scaling factors and the 79 =pd" + SI(¢\R()AG, (15)
translation vectort. These parameters are determined by a _ )
least-squares estimation, i.e. with the geographic coordinates?,,, of the camera, the

geographic coordinatgs)™ of the n-th street marking corner,
3R = aromin - - ol _ 4. R.piek _F||? (9y the rotation mgtrlxR(w) _Wlth headingy, the scallng matrix
{8, R} S R 7 ; P Pr 1" ©) SJ(¢) depending on latitude’ and the known relative posi-
tion Ap?.. of the camera w.r.t. the street marking in Carte-
The translation vector can be eliminated by taking the eentan coordinates. The scaling matr$?(¢) was introduced
of gravity of the camera objeatog! (PCA) into account: because the geographical coordinate system is represented



in spherical coordinates (WGS84) and a flat earth modelWe also introduce a state space model: The position and
with linear scaling is not representative. For instancepf code multipath are simulated as Gauss-Markov processes, i.
longitude at the equator is equivalent to approximately.321 - -

km, while 1° of longitude at a latitude of5° is approximately bia(tn) = bua(tn-1) + 15, (tn)

equivalent ta78.849 km. Thus, longitude decreases to zero as Ap¥s(t,) Ap¥to(tn_1) + Napes (tn),  (20)

the meridians converge at the poles. Thus, the length of one A

degree of longitude is dependent on the latitude. Additlgna and the DD _ar’gb|gumes are aS_S“T“_ed ‘,3 be constant.

the flattening of the Earth causes a slight variation of the The baseliné;,, the DD ambiguitiesvy; and the DD code

. Xl X X '
latitude spacing. We use the approach of Sanchez [8] ItlpathsApMpleare es,“mf"“e]f' Ina Kalrrr]wan tf)llter [?] asd
calculate the scaling matri$,/(¢’) in degrees per meter at oat parameters._ nam Euny IXing can.t €n be performe
a given latitude. based on the estimate &f;; and its covariance matrix. For

a sequential conditional least-squares adjustment, tbeess
. rate can be determined in closed form as the conditional
C. GNSS/ INS/ VPU Sensor Fusion ambiguity estimates are uncorrelated. It is given by
The absolute position informatiop.,,, of the camera K
obtained from the street marker is included in the sensdofius p H pk
. . suc suc
by augmenting the measurement vecigy i.e.

b
[

vty N | = — 21)
Ap2(tn) - 1/ —05 2702
A@B(tn) =1 N1, k-1
= pr(tn) : (16) (EA b )2
pg(tn) ox _ Nyj1,.. k-1 Nyj1,.. k-1 de -
(t ) P 202 Nij1,.. k-1’
ﬁ— N1, k-1
| Peam + b1,cam | . N . , .
with the carrier wavelength\, the phase measuremegt with the conditional varlanceerku ..... k-1 Teunissen has

derived these conditional variances from the triangular de
PompositionZN; = LDL" in [5]. The conditional variances
ond to the diagonal elementsiofi.e.

and pseudorange measurementof receiverr, and the a
priori known baselineb; ¢., between the camera and 1s
GPS antenna. The measurement covariance matrix is extentf@deSP

respectively, i.e. T o =V Diike (22)
5 EMO(tm - Ot 8 17 We make the following assumptions for the measurement
Zn T pltn) > : A7) and process noises to quantify the benefit of visual a priori
0 0 | z (tn) information.

Clearly, the choice ofz, (t,) describes the impact of the Measurement noise assumptions:
visual navigation on the sensor fusion. The measuremeets ar. undifferenced phase measurements:

used to update the state predictidp, i.e. [1,10] mm according to satellite elevation
ot oA B . « undifferenced code measurements:
By = ay o K (20— ha(2) (18) [0.5,1.0] m according to satellite elevation
with K, being the Kalman gain ani, (-) being the mapping « Visual a priori information on positior25 cm
of the state space into the measurement space. Process noise assumptions:
o baseline: 1 m
V. SIMULATION OF POTENTIAL BENEFIT OF VISUAL « code multipathi2.0,5.0] m according to sat. elevation
NAVIGATION Fig. 10 shows that the visual position information enables a

In this section, we would like to quantify the potentiabubstantial reduction of the probability of wrong fixing.ush
benefit of visual navigation for GNSS carrier phase ambjguithe convergence of the Kalman filter is significantly imprdve
resolution. Therefore, we set-up an enhanced RTK simulatiand a reliable fixing becomes feasible within a few seconds

with absolute position a priori information. even in several multipath environments.
The double difference carrier phase and pseudorange mea-
surements of satellites and/ are modeled as V. MEASUREMENT ANALYSIS
Aty = Erlb 4 ANEL 4 gkl In this section, the benefit of a tightly coupled GPS/ INS/
kT : VNS (Visual Navigation System) is analyzed with real-data.
A= @t Ak, alh, @9 NS gation System) is analy

We use a 2D Point Grey monocular camera with Full HD
with the sat.-sat. differenced line of sight vectdf', the resolution and with up ta60 frames per second, and the GPS/
baselineb;», the wavelength), the double difference (DD) INS hardware as described in Section Il. The measurements
integer ambiguitiesV}%, the DD phase noisel}, the DD code were taken at the Konigsplatz in Munich, Germany, i.e. the
multipath Apﬁpu, and the DD code noisgf%. vehicle was driving several rounds around tepylaen at



of the tightly coupled float solution is shifted w.r.t. the &P

10 GPSIINS only solution because of the VPU-based correction durieg th
pnowt camera images first approach. We can observe that the VPU is tracking atstree
102 it cameramages | marking over several epochs which results in a continuous
ever s oy . . .
g 6P/ INS position information. Only the first epoch of the VPU-based
'E, - L”\',‘:,j’”;";e’a'mages position is erroneous as the street marking is still quite fa
2 away.
5
2,6
= 10 4
2
°
o -8
10 b
10" i ‘ ‘

0 5 10 15 20 25 30
Time since initialization [s]

Fig. 10. Reliability of GNSS carrier phase ambiguity resolr The
probability of wrong fixing reduces with increasing time he Kalman filter
converges. The use of camera and geo-referenced satellitges provides
an independent absolute position information, which et significant
reduction of the probability of wrong fixing. A reliable fixgnbecomes
achievable with a few camera images.

Konigsplatz. The sensor fusion is performed accordingdo E
(16) - (18). In the following figures, we show the GPS-onlyid: 12. Benefit of VPU - second approach at Konigsplatz: TR is
. . . . . racking a street marker over several epochs which resuls continuous
solution inred, the VPU-only solution irblue and the tightly ,osition information. Only the first epoch of the VPU-basesifion is
coupled solution invhite erroneous as the street marking is still quite far away.
At the beginning of the trajectory all solutions are very

close. Once a street marking is detected, a VPU position in-Fig. 13 shows the third approach towards the street marking.
formation is instantaneously available and the tightlymled One can observe a very continuous position track of the VPU,
float solution is corrected as shown in Fig. 11. Obviouslyhich improves the tightly coupled solution.

the VPU has a relatively high weight in the sensor fusion as

it enables an instantaneous correction. The high weight is
consequence of thigoat solution, which depends to a certain
extend on code measurements and, thus, has a lower accuri_
than the fixed solution.

Fig. 13. Benefit of VPU - third approach at Kodnigsplatz: TheW provides
a continuous position information over multiple epochs.

Fig. 14 shows a comparison of the trajectory with and
Fig. 11. Benefit of VPU - first approach at Konigsplatz: TheU/Pased WIthO_Ut the VPU of th,e complete tra(?k' Th,e trajectory withou
positioning enables an instantaneous correction of theetiia@GPS-only and VPU is significantly biased and partially lies off the roadcedu
tightly coupled solutions. to an erroneous ambiguity resolution and/ or cycle slip@orr

tion. The integration of the VPU-based position informatio

The second approach towards the same street markingni® the tight coupling corrects for this error and resuttsan

visualized in Fig. 12. At the beginning of this trajectoryalmost unbiased trajectory. A similar benefit can be obthine
segment (in the top right corner), we can see that the t@jectfor the attitude estimation.
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(3]

(4]

(5]

(6]
[7]

Fig. 14. Benefit of tightly coupled GPS/ INS/ VPU over a tightoupled
GPS/ INS without VPU The integration of VPU enables a coroecof erro-
neous ambiguity fixes and, thus, a precise, unbiased posigtermination.

(8]

VI. CONCLUSION

The classical GPS/ INS tightly coupled position determina-
tion becomes ill-conditioned if an additional code multlpa
parameter needs to be estimated for every satellite. This is
typically needed for precise positioning with low-cost GBS
receivers and patch antennas, which can not suppress tee cod
multipath. We developed and integrated an additional Visua
Positioning Unit to solve this problem.

The use of two GPS receivers per car enables an attitude
determination. The use of an additional Virtual Reference
Station allows also an estimation of the absolute position
of a car with centimeter accuracy as atmospheric errors can
be corrected. Inertial sensors provide 3D acceleration and
angular rate measurements, which enable a seamless positio
and attitude determination also below trees and bridges but
drift over time. Vision-based navigation with cameras and
geo-referenced satellite/ aerial images enable an urtbiase
position and attitude determination based on charadterist
street markings. For autonomous driving, precise andhielia
position and attitude information is essential. A fusionadif
considered sensors is required.

In this paper, we described a tight coupling of GPS/ INS
with a Visual Positioning Unit using camera images and geo-
referenced satellite/ aerial images. The Visual Positigtinit
of our system detects street markings in the camera and
satellite images, and uses extrinsic camera calibratiah an
feature locations in a road marking on an inverse perspectiv
mapped image to estimate the vehicle position with respect
to the corner features. We showed that the vision-based
position information reduces the probability of wrong GNSS
carrier phase ambiguity fixing by several orders. The pregos
method was also verified in a test drive. The measurement
results show that a lane keeping and tracking is feasibl@in a
urban environment with substantial multipath.
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